• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

绿色生态资源的规整性开发策略模型与算法求解_张进财

综合考虑绿色生态资源规模、技术创新、开发成本等不确定因素,对归属于不同存储路径的绿色生态资源开发顺序与开发时间进行规整性决策。构建了考虑满足开发优先级顺序与净现值最大化的前提的绿色生态资源开发模型。根据绿色生态资源开发的实际特点,构建了整数规划开采决策模型。基于异步次梯度法的拉格朗日松弛算法求解出稳态下绿色生态资源价格和产量的增长率,并对求解进行数值模拟与敏感性分析。研究表明,技术创新对绿色生态资源的规整性开发起到决定性作用。最终产品供给部门和资源开发部门的资源开发优先级约束、生产约束与资源开采净现值水平将显著影响绿色生态资源产量增长率。

  • 2021-04-21
  • 阅读417
  • 下载0
  • 9页
  • pdf

基于多元线性回归算法的雾霾预测模型的研究_李悦

对乌鲁木齐市环境监测站2013—2015年冬季逐日AQI、PM2.5、PM10、SO2、NO2、CO、O3数据进行相关分析,并利用MATLAB编程工具进行多元回归统计分析,建立了多元回归统计预测模型。对2015年1—3月乌鲁木齐雾霾天气进行预测试验,发现预测值与实际值有较好的拟合效果和预报效果。实验证明,在大气层结稳定的冬季将当天的大气污染物浓度作为因子,用多元线性回归算法建立预测模型对次日雾霾天气进行预测是一种有效的雾霾统计预报手段,本文试图用MATLAB编程工具建立动态多元回归预测模型,编写了自动预测系统软件,测试取得了较好的预测效果。

  • 2021-05-06
  • 阅读417
  • 下载0
  • 6页
  • pdf

基于回归算法的证件物品识别器参数辨识模型_尚宝麒

证件物品管理识别器参数辨识存在局部最优现象,噪声干扰下辨识精度下降,提出基于回归算法的证件物品管理识别器参数辨识模型。将证件物品管理识别参数输出误差平方和,代入粒子群算法适应度函数,通过粒子群优化算法实时更新粒子个体最优值以及全局最优值,初步辨识证件物品管理识别器参数,并将所获取结果作为支持向量回归算法迭代初始值,利用支持向量回归算法,最终辨识证件物品管理识别器参数。模型测试结果表明,采用该模型可有效辨识证件物品管理识别器参数,参数辨识精度高达99%以上,且噪声干扰情况下仍具有较高的辨识精度。

  • 2021-04-20
  • 阅读416
  • 下载0
  • 6页
  • pdf

改进视觉背景提取模型的前景目标检测算法_郁怀波

针对经典视觉背景提取算法(ViBe)在动态背景场景下检测精度不高,以及长时间存在鬼影的问题,提出一种改进的视觉背景提取算法.该方法在背景模型初始化阶段考虑到像素点之间的颜色相似性以及空间距离,选取像素点邻域内的同质像素点对背景模型进行初始化;根据场景动态程度自适应调整每个像素点的阈值以及背景模型更新的速率,改善了在动态背景场景下的检测精度;根据光流判断像素点是否存在运动来把真实前景目标和鬼影区分开来并及时对背景模型进行修正,从而尽快消除鬼影现象.使用changedection测试集进行测试,改进后的ViBe算法在能提取到较完整前景目标的同时,检测准确率相比原始ViBe算法也有所提高.

  • 2021-05-06
  • 阅读416
  • 下载0
  • 8页
  • pdf

基于集合经验模态分解和套索算法的短期风速组合变权预测模型研究_杨磊

准确的风速预测对风电场实现平稳出力具有重要意义。为提高短期风速预测精度,提出一种基于集合经验模态分解()、套索算法、遗传算法、广义回归神经网络和长短期记忆模型的短期风速变权组合预测模型。首先运用集合经验模态分解技术,将原始风速时间序列分解成多个不同的子序列。然后运用套索算法对各个子序列的数据变量进行筛选,提取代表性变量作为预测输入。最后利用GA的全局优化能力,对由GRNN和LSTM构成的组合预测模型的权重系数进行移动样本自适应变权求解,并加权得到最终预测结果。仿真结果表明,所提的变权组合模型比单一模型以及传统组合模型具有更高的预测精度,

  • 2021-04-30
  • 阅读416
  • 下载0
  • 10页
  • pdf

基于ARIMA模型与BP神经网络算法的水质预测_顾杰

近年来,政府相关部门虽然对地表水加大了治理力度,基本遏制河流水质恶化的势头,但是,突发环境污染事件仍然时有发生,对人体健康、生态安全造成了重要影响。利用水质在线监测仪虽然可以实时监测水质变化,但是智能化程度低,为此亟需采用先进手段实现对河流水质的预测预警并提前进行防范,最大程度降低类似藻类暴发等事件带来的损失。文中以嘉兴市河道水质为主要对象,开展水质预测模型研究,具有一定的实际应用价值。采用基于ARIMA自回归积分滑动平均模型与改进的BP神经网络算法相结合的方法进行水质预测的建模,研究水质数据和气象数据包含的线性关系和非线性关系,建立水质预测组合模型,并通过模型进行水质电导率、溶解氧、总磷、总氮、高锰酸盐、氨氮的预测;通过理论分析及试验对比,基于ARIMA自回归积分滑动平均模型与BP神经网络算法构建的模型,在水质预测方面比单纯使用传统的ARIMA模型具有更高的精度,各指标的MRE(平均百分比误差)、RMSE(均方根误差)均有很大程度的减小,提供了更科学、更准确的河流水质指数预测方法。

  • 2021-04-26
  • 阅读416
  • 下载0
  • 10页
  • pdf

基于生成模型的Q_learning二分类算法_尚志刚

为了有效应用数字化技术提供的精细化地理与负荷信息,根据中压配电网的基本特点,将配电网中的元件抽象为图论中的节点和支路,以经济性和可靠性为目标,建立一种新型的大规模中压配电网双Q规划模型;将0-1变量编码方式转化为序列整数编码方式,降低模型求解的复杂度;提出精英蚁群Q算法,并利用该算法求解辐射状网架,根据最短路法和联络优先原则设置联络线,经过反复迭代得到闭环最优网架。广州某新建园区的算例结果验证了所提模型与算法的有效性。

  • 2021-04-21
  • 阅读415
  • 下载0
  • 5页
  • pdf

基于GBDT算法的大数据风控模型研究_王心逸

风电与储能联合投标可有效应对风电的随机性,提高风电与储能的综合效益。文章针对电力市场环境下风储联合投标的模型与算法问题开展研究。首先,详细考虑储能电池循环寿命、风储联合调频性能、风储联合运行条件及电力市场方面的约束,建立风储联合参与电能量市场和调频市场的投标模型。然后,将所提模型转化为马尔科夫决策过程,并提出一种改进动态规划算法进行求解。该算法利用情景记忆避免对各个子问题的重复计算,可显著提高计算效率,并有效处理风储联合投标过程中出现的随机性、非线性、离散性问题和逻辑变量。最后,通过算例说明了所提方法的有效性。

  • 2021-04-22
  • 阅读415
  • 下载0
  • 5页
  • pdf
上一页 1 …… 3637383940414243444546 …… 81 下一页 共 643 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读98
  • 下载1

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读86
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读97
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读138
  • 下载4

最新上线

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读54
  • 下载0

2025全球人工智能展望报告

2025 年,人工智能正式迈入 “智能体元年”,AI Agent?成为驱动产业变革的核心力量,硬件迭代、多模态融合、世界模型演进共同推动行业从 “被动响应” 向 “主动解决复杂问题” 跨越。

  • 阅读10
  • 下载0

算力是人工智能的基础设施

机器学习与深度学习有着明显的异同点 在数据准备和预处理方面,两者是很相似的。他们都可能对数据进行一些操作:数据清洗、数据标签、归一化、去噪、降维。核心区别:传统机器学习的特征提取主要依赖人工,针对特定简单任务的时候人工提取特征会简单有效,但是并不能通用;深度学习的特征提取并不依靠人工,而是机器自动提取的。这也是为什么都说深度学习的可解释性很差,因为有时候深度学习虽然能有好的表现,但是我们并不知道他的原理是什么。

  • 阅读23
  • 下载0

2026六大未来产业发展趋势与人工智能八大落地场景洞察

2025年是中国人工智能规划中期规划的关键节点,AI场景解决方案从“能用”到“有用”到“好用”在垂2025年中国AI产品在用户规模与产品数量上已具备全球竞争力

  • 阅读24
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南