徐钰涵:基于深度强化学习的微电网日前日内协调优化调度
由于可再生能源发电的随机性和储能系统的时间序列耦合特性,在构建微电网经济调度模型时需要适当模拟不确定变量并相应地开发可高效处理多目标问题的优化算法。在此背景下提出了一种能够计及不确定性因素且高效的基于深度强化学习与启发式算法的微电网多时间尺度调度方法,以实现经济环保运行。所提方法从日前、日内两个时间尺度对微电网进行优化。日前优化阶段利用短期预测数据进行初步决策,以最小化运营成本。日内调度阶段以日前优化方案为参考,必要时对日前运行方案进行修正,以应对可再生能源的实时波动。将日内优化过程解耦为全局和局部两阶段,全局阶段被建模为一个非凸的非线性优化问题并采用启发式算法进行求解,局部阶段被建模为一个马尔可夫决策过程采用深度强化学习方法求解,将深度强化学习与启发式算法相结合提高了强化学习的训练速度和收敛性能,避免在复杂环境下的奖励函数设计困难问题。最后,算例分析验证了所提出的方案实现了调度成本和计算速度的优化,并且适用于微电网的实时调度。