科技的发展带着诸多方面的颠覆,人文主义将何去何从 科技的发展带着诸多方面的颠覆,人文主义将何去何从 科技的发展带着诸多方面的颠覆,人文主义将何去何从
为了准确、可靠地识别光伏模型参数,提出一种改进回溯搜索算法(MBSA)。该算法首先通过选取部分种 群个体同时学习当前种群和历史种群信息,而其他个体向当前种群中最优个体学习并远离最差解,从而保持种群多 样性并提高收敛速度;然后,通过概率来量化总体中的个体性能,进而每个个体基于概率自适应地选择不同的进化策 略来平衡探索和开发能力;最后,采用基于混沌局部搜索的精英策略来进一步提高种群的质量。所提算法在单二极 管、双二极管和光伏模块等不同的光伏模型上进行仿真实验。实验结果表明,所提出的策略极大提升了回溯搜索算法(BSA)的收敛速度和参数识别的准确性。将所提算法与逻辑混沌 JAYA(LCJAYA)算法和多重学习回溯搜索算法(MLBSA)等八种先进的算法进行对比,结果表明,所提出算法参数识别的鲁棒性在对比算法中最优,在单、双二极管模型上的识别准确性明显优于JAYA、LCJAYA、改进的JAYA优化(IJAYA)和基于教学的优化(TLBO)算法,在光伏模块模型上的识别准确性明显优于MLBSA、JAYA、IJAYA和TLBO算法。在不同光照条件和不同温度下采用厂商真实数据对薄膜、单晶和多晶三种光伏组件进行的实际测试中,所提算法的预测结果与实测情况一致。仿真结果表明,所提算法能够精确稳定地识别光伏模型参数。
浅层土壤的材料阻尼比参数分布可以通过多通道表面波(MAsw)分析法提取的表面波衰减曲线来反演识别,但是衰减曲线对于较大深度和小空间尺度土壤性质的变化不敏感,反演的土壤材料阻尼比分布是非唯一的和不确定的。基于该研究建立了土体材料阻尼比随深度变化的先验概率分布模型,利用Nataf变换和Karhunen—Loeve将其分解为标准高斯变量与特征值及特征向量的乘积和;随后依据贝叶斯理论,以TLM—PML模型结合频率波数域一半功率带宽法对衰减曲线进行正演,并与试验数据联合构建似然函数,使用蒙特卡洛马尔科夫链(McMc)一Metmpolis(MH)算法得到土体材料阻尼比的后验概率分布模型;对马尔科夫链的收敛性和独立性进行检验获得了多组相互独立的后验样本数据;用独立的后验样本计算出自由场振动响应,利用核密度估计得到具有一定置信度的置信区间,并与试验数据进行比较,验证了该研究提出的土体阻尼比非确定性概率模型的合理性和可靠性。
5G时代的物联网可以对标4G时代互联网的角色和定位,即物联网是互联网的演进方向,是实现各行业产业数字化的底层核心技术。从物联网发展角度来看,运营商将作为推动物联网加速发展的主力军,并从网、端布局逐步延伸至价值量更高的平台、应用层,积极向解决方案提供商转型。
良好生态环境是实现人类永续发展的内在要求,是增进民生福祉的优先领域。国家电网有限公司作为电力能源责任央企,深刻认识到环境保护面临的形势,致力满足“人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾”,对生态环境保护提出的新要求。挖掘企业排污与用电数据的潜在关系,建立分析模型,可对重点企业开展污染防治监控分析,对重点污染地区工业空气质量指标AQI进行排放空间时空测算。研究成果可为环境保护部门准确掌握污染企业的生产规律提供了有效技术手段,助力环保部门加大精准执法和科学制定应急管控措施。
针对长文本自动摘要任务中抽取式模型摘要较为冗余,而生成式摘要模型时常有关键信息丢失、摘要不准确和生成内容重复等问题,提出一种面向长文本的基于优势演员-评论家算法的强化自动摘要模型(A2C-RLAS)。首先,用基于卷积神经网络(CNN)和循环神经网络(RNN)的混合神经网络的抽取器(extractor)来提取原文关键句;然 后,用基于拷贝机制和注意力机制的重写器(rewriter)来精炼关键句;最后,使用强化学习的优势演员-评论家(A2C)算法训练整个网络,把重写摘要和参考摘要的语义相似性(BERTScore值)作为奖励(reward)来指导抽取过程,从而提高抽取器提取句子的质量。在CNN/Daily Mail数据集上的实验结果表明,与基于强化学习的抽取式摘要(Refresh)模 型、基于循环神经网络的抽取式摘要序列模型(SummaRuNNer)和分布语义奖励(DSR)模型等模型相比,A2C-RLAS的最终摘要内容更加准确、语言更加流畅,冗余的内容有效减少,且A2C-RLAS的ROUGE和BERTScore指标均有提升。相较于Refresh模型和SummaRuNNer模型,A2C-RLAS模型的ROUGE-L值分别提高了6. 3%和10. 2%;相较于DSR模 型,A2C-RLAS模型的F1值提高了30. 5%。
全球城市化的进程依然以不可阻挡的趋势向前推进―,到2050年,接近70%的世界人口将生活在城市。人口大国中国和印度所在的亚洲将成为全球城市化最快的地区。在城市急速扩张的过程中,先进的技术将帮助城市实现可持续发展,引领城市走向更美好的未来 。
智慧城市行业持续需求火热,资本利好智慧城市领域,行业发展长期向好。下游行业交易规模增长,为智慧城市行业提供新的发展动力。2019年居民人均可支配收入28228元,同比增长6.5%,居民消费水平的提高为智慧城市行业市场需求提供经济基础。
没有账户,需要注册
国内重点工业物联网平台四类厂商分类及选型指南
工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述智算中心液冷技术概述
基于电碳量化关系的低碳园区建设方案基于电碳量化关系的低碳园区建设方案基于电碳量化关系的低碳园区建设方案基于电碳量化关系的低碳园区建设方案基于电碳量化关系的低碳园区建设方案
绿盟科技集团股份有限公司(以下简称绿盟科技),成立于2000年4月,总部位于北京。公司于2014年1月 29日在深圳证券交易所创业板上市,证券代码:300369。绿盟科技在国内设有50 余个分支机构,为政府、金融、运营商、能源、交通、科教文卫等行业用户与各类型企业用户,提供全线网络安全产品、全方位安全解决方案和体系化安全运营服务。公司在美国硅谷、日本东京、英国伦敦、新加坡及巴西圣保罗设立海外子公司和办事处,深入开展全球业务,打造全球网络安全行业的中国品牌。
2025年中央经济工作会议指出,我国经济基础稳、优势多、韧性强、潜能大,长期向好的支撑条件和基本趋势没有变,经济发展前景十分光明。面对全球经济格局。深度调整,国内居民财富持续积累与资产配置需求日趋多元化,中国财富管理市场机遇与挑战并存。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南