【InformationSciences】基于深度网络的少样本非线性过程监测的域自适应
在当前的工业过程中,多种模式无处不在,不同模式中包含的历史数据量可能会有很大差异。在为特定模式构建故障检测模型时,数据不足很容易导致冷启动问题。为了解决这个问题,在考虑多种模式之间的相似性和差异性的同时,提出了一种基于特征分离的域自适应深度模型,用于少样本的非线性过程监测。该模型从模式中提取共同特征,并通过将领域知识从源转移到共同特征来弥补数据不足。另一方面,为了避免只关注共同特征而丢失有用信息,该模型还提取了目标域的特定特征。因此,在考虑目标域的特定特征的同时,借助域自适应提高了监测性能。此外,设计了三个检测指标,分别监测公共特征子空间、特定特征子空间和残差子空间。这样做的好处是,当故障发生时,可以获得更多的诊断信息。通过数值例子和实际工业加氢过程对提出的方法进行了测试,以验证检测的有效性。
关键词:故障检测、域自适应、通用功能、特定功能