1 何为智能化2 智能化煤矿集成方法论3 智能煤矿解决方案4社会效益分析
2020年09月21日,国务院国资委正式印发《关于加快推进国有企业数字化转型工作的通知》,系统明确国有企业数字化转型的基础、方向、重点和举措,开启了国有企业数字化转型的新篇章,积极引导国有企业在数字经济时代准确识变、科学应变、主动求变,加快改造提升传统动能、培育发展新动能。
在最近的几年中,人工智能随着神经网络的突破,得到了巨大的发展,特别在图像、分析、推荐等领域。在人工智能快速发展的同时,计算规模不断扩大、专家系统过于单一、神经网络模型的灵活性、应用领域的复杂行等问题,也在不断升级。在这样的环境下,分布式人工智能的发展被研究机构和大型企业提上日程。分布式人工智能,可以解决集中化人工智能的几个主要问题:? 规模化的计算问题。? 计算模型的拆分训练。? 多智能专家系统的协作。? 多智能体博弈和训练演化,解决数据集不足的问题。? 群体智能决策和智能系统决策树的组织,适应复杂的应用场景,比如工业、生物、航天等领域。? 适应物联网和小型智能设备,联合更多的计算设备和单元。
计算机视觉应用深度学习堪称突破的成功点是 2012 年 ImageNet 比赛,采用的模型是 CNN,而不是 Hinton 搞的RBM 和 DBN 之类,就是 Hinton 学生做出来以他命名的 AlexNet。图像数据的特征设计,即特征描述,一直是计算机视觉头痛的问题,在深度学习突破之前10多年,最成功的图像特征设计 (hand crafted feature)是SIFT,还有著名的Bag of visual words,一种VQ方法。
到目前为止,我们使用的大多数技术都要求我们通过其特征手动分割图像。但是我们实际上可以使用无监督的聚类算法为我们完成此任务。在本文中,我们将讨论如何做到这一点。
从自动驾驶汽车、预测分析应用程序、人脸识别,到聊天机器人、虚拟助手、认知自动化和欺诈检测,人工智能的用例很多。然而,不管 AI 的应用如何,所有这些应用都是有共性的。他们基本上属于七个常见模式中的一个或多个。这七个模式是:超个性化、自主系统、预测分析和决策支持、会话/人机交互、模式和异常、识别系统和目标驱动系统。
为落实《关于积极推进"互联网+"行动的指导意见》,加快人工智能产业发展,日前,国家发改委,科技部,工业和信息化部,中央网信办制定了《"互联网+"人工智能三年行动实施方案》
数控机床是现代工业生产的重要基础设备之一,被广泛应用于机械制造、航空航天、国防建设等领域,影响一个国家的经济水平和综合国力。数控机床故障的发生,不仅直接造成经济损失,更带来安全隐患。数控机床故障诊断技术是一门专门解决数控机床故障问题的综合性应用技术,它使用测试技术、信号分析、数据处理技术、计算机技术来及时发现甚至提前预知数控机床故障。本文使用朴素贝叶斯分类法进行故障识别,基于Python语言和WebSocket技术实现了数控机床远程实时故障诊断系统。故障诊断算法方面以滚动轴承正常和故障信号数据为例,使用零均值化和小波包滤波对信号进行预处理,然后使用时域分析、频域分析和连续小波变换提取信号特征,最后使用朴素贝叶斯分类法实现故障识别。使用Python语言及相关科学计算工具包进行编程实现。根据数控机床中需要被监控的机械部件,选择合适的传感器和数据采集设备,建立数据采集系统,构成实现数控机床故障诊断系统的硬件基础。软件系统分为采集端、服务端和用户端,由于Python几乎可以实现任何程序的编写,并且扩展性极强和其在科学计算方面的优势,使用Python语言实现整个软件系统的大部分功能,在数据采集方面,不能由Python完成的地方使用VC++2010对Python进行扩展。采集端和服务端使用C/S结构,通过TCP通信进行数据交互。采集到的原始数据存储在MAT文件中,其他数据使用MariaDB数据库进行存储。用户端和服务端使用B/S结构,使用Tornado框架实现Web服务器和Web站点,用户通过Web浏览器访问系统。Web站点前端使用HTML5规范的WebSocket实现实时的大量数据传输,并且使用VSG、Bootstrap、JQuery和Echarts前端框架和插件,实现了较友好的人机交互界面。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
中服云作为国内领先的工业物联网平台厂商,其技术架构与功能特性高度适配火山地震监测场景的需求
人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能 发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家 和世界科技强国,按照党中央、国务院部署要求,制定本规划
:整合多模态医学数据,包括图像、文本、声音、 传感器数据和基因组、转录组、蛋白质组等多组学数据,完成 不同时间点、条件下的数据对齐,构建医学科研数据资源库。 利用数据融合模型与方法,提供跨模态标注算法和标注工具, 揭示跨模态数据之间的语义关联性,帮助分析其相互作用和整 合效果,提高诊断和分析的准确性。面向不同类型的数据,提 供计算机视觉、自然语言处理、图学习等多类算法,对多模态 数据进行特征提取、模型训练、统计分析等,以识别疾病标志 物和模式。提供科研合作平台,促进跨学科研究团队的协作, 支持将分析结果转化为临床辅助决策支持工具,辅助医生进行 更准确的诊断和治疗规划。
为抢抓人工智能发展新机遇,支持人工智能技术赋能智能终端产品,推动智能终端产业高质量跨越 式发展,加快建设国际国内领先的人工智能终端产业集聚区,按照《关于加快发展新质生产力进一步推 进战略性新兴产业集群和未来产业高质量发展的实施方案》《深圳市加快打造人工智能先锋城市行动方 案》等文件要求,结合我市实际,制定本行动计划
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南