本文提出了一种基于TrCNN的多尺度域自适应方法,用于数据稀缺情况下的故障诊断。源域诊断模型采用Trans-former和CNN序列结构,在全局和局部捕获原始数据的互补诊断信息,有助于域自适应,同时提高源域故障诊断的准确性。我们提出了一种多尺度分布对齐框架MTCDAN,通过学习包含更多信息的多个域不变表示来补偿单结构分布对齐方法中的信息损失。通过TE过程和TFF实例验证了该方法的有效性和优越性。然而,由于仅考虑两个域标签空间相同的情况,本文提出的方法仍然受到限制。在我们未来的工作中,我们将进一步研究目标域中发生未知故障时的分布对齐策略,其中如何识别未知故障将是我们工作的重点。
本文从皂基型洁面膏的配方结构、制作工艺两方面阐述了皂基型洁面膏中各种组分对皂基体系的作用,以及生产工艺对产品的影响,对化妆品工程师进行皂基型洁面膏产品的配方设计和生产实践具有一定的指导意义和参考价值。
皂基产品在国内出现已经很多年了,但是国内的化妆品企业对此类产品的研究仍不够深入,皂基产品做的比较好如六神及樱雪等沐浴露等。而皂基的洁面膏制造工艺复杂,尤其是冷却过程,需要专门的大型设备,小型工厂根本没有能力生产出柔滑细腻的皂基洁面乳。所以目前市面上出售的大都是欧莱雅之类的大公司产品,国内的化妆品企业对此类产品的研究似乎仍然处于起步阶段,根据目前在世面上能够见到的国内企业所生产的洁面膏产品的分析,大多数企业所生产的洁面膏产品都没有能够达到国外同类产品的性能指标。
本文提出了一种用于复杂设备关键部件RUL的T2张量辅助多尺度Transformer,以捕捉多尺度时间模式。我们新颖地提出了时间数据和T2张量的张量化表示,并开发了一种高阶Transformer来提取T2张量的多尺度时间特征。针对该模型,提出了一种具有TRdecom位置的轻量级方法。他们提出的模型在准确性和效率方面具有卓越的能力。然而,我们提出的方法只是初步尝试,未来我们需要进一步研究数据处理,并将这种方法与分布式张量计算和云边缘协作等技术相结合,以提高模型的性能。
在本研究中,提出了一种新的基于KSLD TNet的轻量级深度学习模型,该模型可以有效地简化特征提取,增强对数据集中关键样本信息的提取。通过对关键样本的定位和提取,设计了一种基于传统Transformer网络的创新预测框架,从图书搜索的角度提高了工业过程的多步预测精度。两个真实的工业数据集证明了所提出的预测框架的优越性能。与最先进的方法相比,所提出的方法在多步预测精度和模型计算效率方面具有优势。由于该方法的样本简化机制可以减少模型计算量,因此更适合于工业大数据环境。在未来的研究中,我们将考虑如何使用本地化的关键样本进行扩充,以在小样本数据的背景下提高模型性能。
针对轴承全寿命周期数据获取困难、训练样本少的问题,提出一种基于关系网络的轴承剩余使用寿命 (Remaining useful life,RUL) 预测方法。
离心式压缩机的性能受吸入压力、吸入温度、吸入流量,进气分子量组成和原动机的转速和控制特性的影响。一般多种原因相互影响发生故障或事故的情况最为常见,现将常见的故障可能的原因和处理措施,列于下面表中。
是常见的故障类型,以磨损和剥落为代表的局部故障占有较大比重。滚动轴承工作过程中滚动体与滚道不可避免地存在接触碰撞, 长期工作产生的接触疲劳会导致内滚道、外滚道和滚动体 出现裂纹继而引发剥落, 形成局部故障. 此外, 当滚动轴承出现轻载打滑或者过载时也会造成轴承磨损, 磨 损加剧后就会演变成局部故障.
没有账户,需要注册
163页化工动设备讲义(PPT),163页化工动设备讲义(PPT),163页化工动设备讲义(PPT)
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
滨海蓝碳 红树林 盐沼 海草床碳储量和碳排放因子评估方法 (陈鹭真,卢伟志,林光辉译),滨海蓝碳 红树林 盐沼 海草床碳储量和碳排放因子评估方法 (陈鹭真,卢伟志,林光辉译)
北京云纵技术:智慧食堂解决方案32页,北京云纵技术:智慧食堂解决方案32页,北京云纵技术:智慧食堂解决方案32页北京云纵技术:智慧食堂解决方案32页
北京英博:电力电子再进化,工商储能再赋能,北京英博:电力电子再进化,工商储能再赋能,北京英博:电力电子再进化,工商储能再赋能
大模型是指通过在海量数据上依托强大算力资源进行训练后能完成大量不同下游任务的模型。大模型以其在模型精度和泛化能力等多个指标上超越传统AI模型的表现,以及赋能千行百业的巨大潜力,成为当今世界各国人工智能技术发展的核心方向。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南