• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

【ASC】基于自适应残差CNN的小型模块化电抗器故障检测与诊断系统

随着工业4.0技术的发展,降低维护成本并结合深度学习(DL)技术确保新型核系统的安全是一种流行趋势。本文提出了一种基于设计的自适应残差卷积神经网络(ARCNNs)的小型模块化反应堆(SMR)智能故障检测与诊断系统(lFDD)。不同噪声水平下的特征被学习为残差,并通过设计的网络传递。此外,自适应残差处理(ARP)模块中组装的软阈值(ST)方法提高了学习效率。采用贝叶斯优化(B0)方法提高设计网络的学习衰减率(LDR),以获得更好的诊断性能。从已建立的中国铅基核反应堆(CLEAR)平台上收集了11种不同操作场景下三种不同噪声水平的1760个实验数据点,以验证所提出的LFDD的有效性。与以往工作中采用的传统RCNN和CNN的比较突显了所提出的诊断方法的优越性。使用B0方法进一步提高了lfDD的性能。作为SlMR智能研究的首次尝试,该方法将为无人值守条件下的核操作员提供远程决策支持。此外,该通用方法也可应用于其他无噪声环境下的诊断系统。关键词:故障检测与诊断、深度学习、残差CNN、贝叶斯优化、小型模块化反应堆。

  • 2024-10-08
  • 阅读333

【Energy】用于安全关键能源系统可靠健康监测的不确定性感知深度学习

近年来,深度学习技术的重大进步促进了能源系统智能健康监测方法的发展。然而,在处理核能系统等安全关键能源系统时,具有点估计的传统深度学习模型无法解释预测中的固有不确定性,这一局限性对为关键操作提供可靠和值得信赖的决策支持提出了挑战。为了克服这一挑战,本研究提出了一种新的智能监测方法,该方法集成了不确定性感知的深度神经网络。首先,提出了一个基于时空状态矩阵的信号预处理方法,以提高特征提取能力,从而有效地整合各种多源数据。其次,开发了一种概率分布,为所有网络参数生成预测不确定性,从而能够评估模型输出的置信度,不仅适用于已知的操作场景,也适用于未知的操作场景。最后,使用已建立的先进核能研究平台和公共核事故模拟平台进行实验,确保所提出方法在实际环境中的有效性和适用性。总体而言,拟议的方法显著提高了监测输出的可靠性和可信度,同时降低了与安全关键能源系统决策过程相关的风险。关键词:安全关键能源系统、不确定性感知深度学习、智能健康监测、值得信赖的决策。

  • 2024-10-08
  • 阅读291

【AEI】先验知识增强无监督形状学习用于工业过程中未知的正常工作条件发现

未知异常工况的发现是精细化工业生产的关键,集群工业时间序列是发现未知工况类型的有效方法。然而,从工业时间序列中发现未知的异常工作状态对现有的时间序列聚类方法来说是一个挑战。本研究提出了一种新的先验知识增强无监督形状集学习方法,通过可解释的子序列发现异常和有意义的工作状态。提出了一种先验特征提取模块,将先验知识转化为数据模型的可识别形式。先验知识包含异常工作状态信息,知识增强聚类模块可以通过将先验特征与数据特征相结合来学习表示异常工作状态的信息形状集。此外,先验知识和数据的偏好在学习阶段会自我调整。对实际铝电解过程、模拟田纳西伊斯曼过程和连续搅拌槽加热器过程的数值试验结果验证了所提出方法的优越性能。所提出的方法为先验知识和数据模型的融合提供了新的视角。它还为解决工业过程中异常未知工况发现问题提供了一种新方法。关键词:先验知识,铝电解,时间序列,Shapelet,聚类

  • 2024-10-08
  • 阅读386

【RSER】工业过程的能源消耗和碳排放预测:现状、挑战和前景

工业过程消耗大量能源并排放大量二氧化碳。借助准确的能源消耗和碳排放预测,工业企业将更容易实现清洁生产,优化能源结构,通过更深入地控制生产情况来降低生产成本和碳排放。由于机器学习建模方法的过度饱和,预测模型在提高准确性和提取数据特征方面面临困难。引入深度学习方法来解决这些问题,然而,数据传输中关键参数和异常的不准确测量加剧了工业大数据的不确定性。这使得基于机器学习的预测模型表现出很强的不确定性和较差的泛化能力。因此,提高当前工业能耗和碳排放预测模型在不同工业情景下的准确性非常困难。本文总结了近年来工业过程能耗和碳减排预测的研究。结合当前工业过程的实际问题,本文总结了三种预测模型:(i)基于深度学习和模型不确定性相结合的多步预测模型,(i)结合机制和数据驱动方法的预测模型,以及(ii)基于智能算法的预测模型。这些模型将成为未来建立通用工业过程能耗和碳排放预测模型的新途径。关键词:系统集成与分析、碳排放、节能减排、深度学习、人工智能

  • 2024-10-09
  • 阅读416

【AEI】工业过程少样本故障检测的无监督域对抗网络

工业过程正在变得更大、更集成,导致不同操作条件之间的频繁转换。在新的操作条件下对流程进行故障检测时,样本的稀缺性对构建有效的监控模型构成了重大挑战。为了解决样本较少的故障检测问题,我们提出了一种称为DASAE的方法。该方法基于堆叠式自动编码器(SAE),并结合了域对抗(DA)技术,通过从数据丰富的源域(历史工作模式)传输有价值的信息来对数据贫乏的目标域(新的工作模式)进行建模。DASAE涉及一种新的无监督知识转移范式,该范式依赖于领域相似性,而无需标签指导。为了应对对抗训练中数据不平衡的挑战,我们引入了一种主要的不平衡感知裕度损失(DlAM),通过鼓励少数域有更大的裕度来缓解这一问题。所提出的方法使用数值案例和现实世界的行业案例——连续搅拌釜反应器(CSTR)进行了评估。结果表明,在少数样本场景中,与其他最先进的方法相比,所提出的方法通常表现出最佳性能,在和SPE指标上都显示出增强的检测效果。关键词:领域对抗训练、不平衡数据、堆叠式自动编码器、故障检测、少量样本

  • 2024-10-09
  • 阅读535

【IEEETNNLS】用于工业数据序列建模的分层自关注网络,在输入和输出序列之间具有不同的采样率

对于工业过程,进行数据序列的动态建模对于质量预测具有重要意义。然而,输入和输出序列之间的采样率通常不同。对于最传统的数据序列模型,它们必须仔细选择标记的样本序列来构建动态预测模型,而标记样本之间的大量未标记的输入序列则被直接丢弃。此外,在每个标记步骤的质量预测中,通常没有充分考虑变量和样本的相互作用。为了解决这些问题,我们设计了一个层次化的自我注意网络(HSAN)用于自适应动态建模。在HSAN中,首先为每个标记步骤设计动态数据增广,以包括未标记的输入序列。然后,提出了一个可变水平的自我关注层来学习可变交互和短间隔时间依赖性。之后,进一步开发了一个样本级的自我关注层来模拟长时间间隔的时间依赖关系。最后,构建了一个长短期记忆网络(LSTM)网络来对包含大量相互作用的新序列进行建模,以进行质量预测。在工业加氢裂化过程中的实验表明了HSAN的有效性。关键词:深度学习、分层自关注网络(HSAN)、质量预测、自关注机制、软传感器。

  • 2024-10-09
  • 阅读387

【IEEETASE】基于掩码前层次结构插补框架的工业时间序列停电丢失数据恢复

在工业过程中,频繁的通信故障和信息损坏可能会导致工业过程数据的完整块丢失,也称为停电丢失数据。工业时间序列的不完整数据阻碍了后续建模和控制任务的执行。然而,传统的矩阵分解或监督学习数据插补方法很难应用于恢复停电丢失数据的艰巨任务。输入停电数据的困难源于两个主要因素:输入过程缺乏共同进化变量的参考,停电数据在分布上具有很强的自相关性和漂移性。为了解决这些问题,本文开发了一种基于屏蔽变压器网络(屏蔽变压器)的新型分层插补框架,用于恢复停电数据。首先,创新性地提出了一种具有随机掩码点的重建块策略,以提高模型在不完整数据集的不同工作条件下恢复缺失值的能力。然后,基于所提出的不完整数据集,该方法利用卷积网络的局部特征捕获能力和自关注机制的样本级远程依赖捕获能力,分别完成粗粒度和细粒度缺失数据的插补。最后,进行了扩展实验,以验证所提出的方法在两个真实工业数据集上的优越性能。

  • 2024-10-09
  • 阅读317

【EAAI】基于目标相关变换器网络的面向任务的深度学习框架在工业质量预测中的应用

执行各种生产任务对工业过程的安全运行和高效生产至关重要。其中,关键质量变量的检测任务直接影响工业过程的运行优化和决策,但受到恶劣环境和检测仪器的严重限制。因此,关键质量变量的实时预测任务成为工业过程优化控制的基础。为了解决这个问题,本文提出了一种基于目标相关变换器(TR-Former)网络的面向任务的深度学习框架,用于工业质量预测任务。具体而言,开发了一种新的目标相关自我注意('TR-sA)机制,通过在任务相关目标变量和其他变量之间添加注意分数来指导特征学习。结果表明,在这种情况下,学习到的特征将与目标变量相关,并可用于质量预测任务。此外,还可以捕获工业过程数据的长期动态,这可以进一步提高模型的预测性能。最后,在两个工业过程上进行了广泛的实验,以验证所提出的方法在质量预测任务方面的优越性。实验结果表明,与传统变压器和其他最先进的方法相比,所提出的TR- Former方法在平均绝对误差指标方面提高了3%至13%。关键词:深度学习、目标相关变换器、质量预测、工业过程

  • 2024-10-09
  • 阅读311
上一页 1 …… 20102011201220132014201520162017201820192020 …… 2191 下一页 共 17527 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读127
  • 下载2

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读109
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读118
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读166
  • 下载5

最新上线

人工智能赋能教育高质量发展

从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。

  • 阅读31
  • 下载1

2025年度低空经济投资策略

市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。

  • 阅读36
  • 下载0

数字档案馆标准建设方案

XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。

  • 阅读49
  • 下载0

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读88
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南