本文整理了十五种常见的振动故障及其特征频谱: 不平衡,不对中,偏心转子,弯曲轴,机械松动,转子摩擦,共振,皮带和皮带轮,流体动力激振,拍振,偏心转子,电机,齿轮故障,滚动轴承,滑动轴承。
机械故障诊断的报警规则及标准,机械故障诊断的报警规则及标准,机械故障诊断的报警规则及标准,机械故障诊断的报警规则及标准
随着工业技术以及新一代信息技术的迅速发展,石油、化工、电力、游乐、新能源汽车等各领域的装备日趋复杂,装备的集成化智能化程度不断提高。伴随着复杂装备的发展,其设计、制造、测试、运行维护等全寿命周期成本大幅度增加。
通过大数据分析能够有效发现问题间的关联性,但对于挖掘问题之间的因果性却相对乏力,而后者恰恰是工业领域实现智能化转型的关键。要实现对于问题因果性的挖掘,就需要结合工业机理知识,在深入了解系统结构和运行逻辑的基础上进行分析及预测。具体到应用的关键点,最核心的一部分是故障预测与健康管理(PHM)。
为有效地获取滚珠丝杠副精度寿命特征, 利用滚珠丝杠副磨损特征建立加速退化模型, 并且根据设计的试验装置和试验过程的摩擦力矩值变化情况, 采用参数估计方法进行退化数据的统计分析, 获得不同应力水平下的滚珠丝杠副加速退化参数模型。
通过加速度计和传声器采集数据,实现更准确、鲁棒的轴承故障诊断。该方法从原始振动信号和声学信号中提取特征,并利用基于1d - cnn的网络进行融合。在十组轴承上获得的大量实验结果用于评估所提出方法的性能。通过分析不同信噪比下的损失函数和准确率,经验发现该方法比基于单模态传感器的算法具有更高的诊断准确率。此外,还进行了可视化分析,探讨了所提出的基于1d - cnn的方法的内部机制。
在传统的工业自动化金字塔中,SCADA(监控和数据采集)系统在第 2 级运行,管理和收集工厂运营基础层(0 和 1)的数据,其中包括 PLC(可编程逻辑控制器)和现场设备。它还与第三层的 MES(制造执行系统)等更高级别的应用程序进行通信。
通俗来说,机器学习模型就是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。
没有账户,需要注册
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
针对现有基于深度学习的潮流计算方法均基于回归模型,不具有潮流判敛功能对输入的潮流不收敛样本仍映射出虚假系统潮流分布问题,提出一种适用于潮流分析的多任务学习模型,同时具备潮流判敛及潮流分布计算功能。
本文提出了一种基于气吹灭弧原理的一体化防雷灭弧间隙,并且基于磁流体动力学原理 (MHD)对间隙电弧进行仿真分析,利用有限元仿真分析软件搭建了该一体化防雷灭弧间隙模型,分析了间隙电弧熄灭的能量消损过程。
数字孪生城市是在数字空间对物理城市进行复刻、精准映射、实时交互的数字城市,通过数字建模、感知连接、智能分析等技术,洞察物理城市运行状态,仿真推演运行趋势,形成智能交互决策,反馈于物理城市,实现对物理城市的持续优化和迭代升级。自 2017 年“数字孪生城市”建设理念被首次提出以来,在国家部委政策驱动下,数字孪生城市相关技术逐渐成熟,全国多地加快数字孪生应用场景创新实践,在文旅、城市治理和网络等热点领域形成大量优秀案例,市场规模持续增长,应用效能不断增强。
设备点检SOP培训PPT课件
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南