流程是以完成某一个业务目标而进行的一系列顺序执行或并行活动或任务的集合。 流程必须包括明确清晰的目标定义、工作描述、输入、输出、考核指标、流程负责 人和参与岗位等内容。
偏最小二乘(PLS)模型是软测量等质量相关工业任务中最典型的数据驱动方法。然而,在PLS中,输入和输出数据之间只捕获了线性关系。在残差子空间中很难获得剩余的非线性信息,这可能会降低复杂工业过程中的预测性能。为了充分利用PLS残差子空间中的数据信息,本文提出了一种用于质量预测的深度残差PLS(DRPLS)框架。受深度学习的启发,DRPLS是通过连续堆叠多个PLS来设计的,其中前一个PLS的输入残差被用作层连接。为了增强表示,在使用它们堆叠高级PLS之前,对输入残差应用非线性函数。对于每个PLS,输出部分只是其先前PLS的输出残差。最后,通过将每个PLS的结果相加得到输出预测。在工业加氢裂化过程中验证了所提出的DRPLS的有效性。 关键词:深度残差偏最小二乘(DRPLS)、非线性函数、质量预测、软测量。
关键质量指标的多步提前预测是优化和控制工业过程的基石。在长期预测范围内进行精确的多步预测,在提高工业过程的生产性能方面具有巨大的潜力。然而,提取历史特征对于实现这一目标具有重要意义。最近的进展表明,变压器网络为这一挑战提供了一种有前景的技术解决方案。然而,缺乏样本简化机制使得深度特征提取变得困难。它需要大量的计算成本,这使得传统的变压器网络在工业过程中不太适用。为了探索克服这些障碍的策略,并提高变压器网络对有效多步预测的适用性,本文提出了一种新的关键样本定位和分解变压器网络(KSLD-TNet)。具体来说,它首先使用注意力得分矩阵定位具有强交互作用的关键样本。然后,在KSLD TNet编解码器结构中逐层过滤非关键样本。这样,每层的输入样本数量可以呈指数级下降,显著降低了深度特征提取的难度和计算量。值得注意的是,本文还设计了一种信息存储结构,以避免样本分离过程中的信息丢失。利用两个工业过程数据集构建了广泛的实验,以证明所提出方法的有效性。关键词:深度学习、工业过程、关键样本定位(KSL)和蒸馏变压器、多步预测
软传感器在复杂工业过程的质量预测中得到了越来越多的应用,这些过程通常具有不同的拓扑规模和高度耦合的时空特征。然而,现有的软测量模型在提取多耦合复杂过程数据中的多尺度局部时空特征并充分利用它们来提高预测性能方面通常面临困难。因此,本文提出了一种基于多尺度注意力的CNN(MSACNN)来缓解这些问题。在MSACNN中,不同大小的卷积核首先在卷积层中并行设计,可以生成包含不同尺度局部时空特征的特征图。同时,在特征图上并行设计了一种通道式注意力机制,以获得它们的注意力权重,代表不同尺度下局部时空特征的重要性。通过两个实际工业过程的性能评估,验证了所提出的MSACNNover方法相对于其他最先进方法的优越性。关键词:卷积神经网络(CNN)、基于多尺度注意力的CNN(MSACNN)、质量预测、软传感器。
2024保险业监管研究及数字化转型方向探索白皮书,2024保险业监管研究及数字化转型方向探索白皮书,2024保险业监管研究及数字化转型方向探索白皮书,2024保险业监管研究及数字化转型方向探索白皮书
1)本文系统地总结了“双碳”背景下“双高”电力系统电网阻抗实时变化时光伏并网逆变器最新谐振抑制方法,从并网逆变器单元和集群两方面综述了谐振抑制热点控制方法,总结了相关方法的优缺点。2)本文总结了“双碳”背景下光伏并网逆变器更高性能要求的研究方向,有利于提升智能算法在本领域的交叉应用、并网逆变器的功能性以及工程实用性。
55个国外CCUS项目,55个国外CCUS项目,55个国外CCUS项目,55个国外CCUS项目,55个国外CCUS项目
9、中国新环境管理下的CCUS发展-22页,9、中国新环境管理下的CCUS发展-22页,9、中国新环境管理下的CCUS发展-22页
没有账户,需要注册
包括集团管控系统、工厂系统、开发发布系统、运维管理系统、网关系统5大子系统,旨在实现集团内部多工厂、多部门之间的协同管理和数据共享。通过构建一体化的工业物联网平台,整合各工厂的生产、设备数据和资源,打造集团统一的工业操作系统底座,为集团提供统一的管理视角和决策依据,提升集团整体运营效率和协同效应
清华之后,北大也不甘示弱,推出了DeepSeek教程。清华的教程是传媒学院出的,而北大的这份文件是人工智能学院和计算机学院出的,所以总体上内容更加专业、全面和深入,尤其还提到了AI时代工作和技能需求的变化,可以说是不可多得的优质资料。
成都市作为中国国家中心城市,秉承“创新、协调、绿色、开放、 共享”理念,运用 CIM 平台+免接口数据集成技术,打造城市大脑, 推行网络理政。通过接入市、区(市)县两级部门信息系统,融合政 府、企业和社会数据,以网络理政为城市大脑中枢,构建能在线监测、 能分析预测、能应急指挥的智能城市治理运行体系,提升城市治理能 力。
本书在实践积累与行业洞察基础上,试图对一系列关键问题做出解答:工业大模型与通用大模型有何不同?工业大模型的技术体系与关键技术何在?工业大模型赋能的重点领域和主要场景包括哪些?我国和全球工业大模型的产业生态如何?
虽然本文方法实现了锂离子电池在无温度传感器条件下的温度预测,但实际应用中可能存在的复杂工况条件,如不同环境温度、充放电倍率情况下的电池温度预测问题还缺乏深入的讨论,未来的工作将致力于更为复杂情况下的研究。
电力系统灵活调节能力充裕度研究在新型电力系统建设过程中有着重要地位,为了研究这一问题,本文建立了基于形态学分解的电力系统灵活调节能力充裕度分析模型。通过使用某地区实际电力系统运行数据进行仿真验证,可以得到以下结论。
国内智能化安全运营正处在一个充满机遇和挑战的关键发展阶段。A 技术的深度赋能、自动化水平的持续提升、数据驱动理念的深化、应用场景的不断扩展、人机协同模式的探索、云化与 Saas 化的加速、量化管理的普及以及生态合作的深化,共同勾勒出IS0C未来的发展蓝图。企业应积极拥抱这些趋势,克服挑战,构建面向未来的智能化安全运营体系,以应对日益复杂的网络安全威胁,保障数字化转型的顺利进行。
英伟达(NVIDIA)自1993年创立以来,以技术前瞻性和生态构建能力重塑计算产业格局。经历1999年纳斯达克上市奠定资本基础后,公司在2006年推出革命性的CUDA并行计算架构,突破性地将GPU应用边界从图形渲染拓展至高性能计算领域,为后续人工智能革命埋下关键伏笔
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南