第27章 生产与服务运作管理中的优化问题

本章主要介绍生产和服务运作管理方面的一些优化问题。实际上,生产和服务运作 管理的内容也是非常丰富的,几乎包含了企业管理的所有方面,本章中只是介绍几个实 例而已。 §1 有瓶颈设备的多级生产计划问题 1.1 问题实例 在制造企业的中期或短期生产计划管理中,常常要考虑如下的生产计划优化问题: 在给定的外部需求和生产能力等限制条件下,按照一定的生产目标(通常是生产总费用 最小)编制未来若干个生产周期的最优生产计划,这种问题在文献上一般称为批量问题 (lotsizing problems)。所谓某一产品的生产批量(lotsize),就是每通过一次生产准备生 产该产品时的生产数量,它同时决定了库存水平。由于实际生产环境的复杂性,如需求 的动态性,生产费用的非线性,生产工艺过程和产品网络结构的复杂性,生产能力的限 制,以及车间层生产排序的复杂性等,批量问题是一个非常复杂、非常困难的问题。 我们通过下面的具体实例来说明这种多级生产计划问题的优化模型。这里“多级” 的意思是需要考虑产品是通过多个生产阶段(工艺过程)生产出来的。 例 1 某工厂的主要任务是通过组装生产产品 A ,用于满足外部市场需求。产品 A 的构成与组装过程见图 1,即 D, E, F,G 是从外部采购的零件,先将零件 D, E 组装成 部件 B ,零件 F,G 组装成部件C ,然后将部件 B,C 组装成产品 A 出售。图中弧上的 数字表示的是组装时部件(或产品)中包含的零件(或部件)的数量(可以称为消耗系 数),例如 DB弧上数字“9”表示组装 1 个部件 B 需要用到 9 个零件 D ; BA 弧上的 数字“5”表示组装 1 件产品 A 需要用到 5 个部件 B ;依此类推。 图 1 产品构成与组装过程图 假设该工厂每次生产计划的计划期为 6 周(即每次制定未来 6 周的生

  • 2021-10-31
  • 阅读371
  • 下载0
  • 29页
  • pdf

第26章 经济与金融中的优化问题

本章主要介绍用 LINGO 软件求解经济、金融和市场营销方面的几个优化问题的案 例。 §1 经济均衡问题及其应用 在市场经济活动中,当市场上某种产品的价格越高时,生产商越是愿意扩大生产 能力(供应能力),提供更多的产品满足市场需求;但市场价格太高时,消费者的消费 欲望(需求能力)会下降。反之,当市场上某种商品的价格越低时,消费者的消费欲望 (需求能力)会上升,但生产商的供应能力会下降。如果生产商的供应能力和消费者的 需求能力长期不匹配,就会导致经济不稳定。在完全市场竞争的环境中,我们总是认为 经济活动应当达到均衡(equilibrium),即生产和消费(供应能力和需求能力)达到平 衡,不再发生变化,这时该商品的价格就是市场的清算价格。 下面考虑两个简单的单一市场及双边市场的具体实例,并介绍经济均衡思想在拍 卖与投标问题、交通流分配问题中的应用案例。 1.1 单一生产商、单一消费者的情形 例 1 假设市场上只有一个生产商(记为甲)和一个消费者(记为乙)。对某种商 品,他们在不同价格下的供应能力和需求能力如表 1 所示。举例来说,表中数据的含义 是:当单价低于 2 万元但大于或等于 1 万元时,甲愿意生产 2t 产品,乙愿意购买 8t 产 品;当单价等于或低于 9 万元但大于 4.5 万元时,乙愿意购买 2t 产品,甲愿意生产 8t 产品;依次类推。那么的市场价格应该是多少? 表 1 不同价格下的供应能力和需求能力 生产商(甲) 消费者(

  • 2021-10-31
  • 阅读353
  • 下载0
  • 38页
  • pdf

第23章 现代优化算法

现代优化算法是 80 年代初兴起的启发式算法。这些算法包括禁忌搜索(tabu search),模拟退火(simulated annealing),遗传算法(genetic algorithms),人工神经网 络(neural networks)。它们主要用于解决大量的实际应用问题。目前,这些算法在理论 和实际应用方面得到了较大的发展。无论这些算法是怎样产生的,它们有一个共同的目 标-求 NP-hard 组合优化问题的全局最优解。虽然有这些目标,但 NP-hard 理论限制它 们只能以启发式的算法去求解实际问题。 启发式算法包含的算法很多,例如解决复杂优化问题的蚁群算法(Ant Colony Algorithms)。有些启发式算法是根据实际问题而产生的,如解空间分解、解空间的限 制等;另一类算法是集成算法,这些算法是诸多启发式算法的合成。 现代优化算法解决组合优化问题,如 TSP(Traveling Salesman Problem)问题,QAP (Quadratic Assignment Problem)问题,JSP(Job-shop Scheduling Problem)问题等效 果很好。 §1 模拟退火算法 1.1 算法简介 模拟退火算法得益于材料的统计力学的研究成果。统计力学表明材料中粒子的不 同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和 重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(这个过 程被称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形 成处于低能状态的晶体。 如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了 退火过程。假设材料在状态i 之下的能量为 E(i) ,那么材料在温度T 时从状态i 进入状 态 j 就遵循如下规律: (1)如果 E( j) ≤ E(i) ,接受该状态被转换。 (2)如果 E( j) > E(i) ,则状态转换以如下概率被接

  • 2021-10-30
  • 阅读416
  • 下载0
  • 20页
  • pdf

第22章 模糊数学模型

1 模糊数学的基本概念 1.1 模糊数学简介 1965 年,美国著名计算机与控制专家查德(L.A.Zadeh)教授提出了模糊的概念,并 在国际期刊《InformationandControl》并发表了第一篇用数学方法研究模糊现象的论文 “Fuzzy Sets”(模糊集合),开创了模糊数学的新领域。 模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼性”。如高个子 与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有 这种模糊的现象,如选举一个好干部,但怎样才算一个好干部?好干部与不好干部之间 没有绝对分明和固定不变的界限。这些现象很难用经典的数学来描述。 模糊数学就是用数学方法研究与处理模糊现象的数学。它作为一门崭新的学科,它 是继经典数学、统计数学之后发展起来的一个新的数学学科。经过短暂的沉默和争议之 后,迅猛的发展起来了,而且应用越来越广泛。如今的模糊数学的应用已经遍及理、工、 农、医及社会科学的各个领域,充分的表现了它强大的生命力和渗透力。 统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然 现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即 从精确现象到模糊现象。 实际中,我们处理现实的数学模型可以分成三大类:第一类是确定性数学模型,即 模型的背景具有确定性,对象之间具有必然的关系。第二类是随机性的数学模型,即模 型的背景具有随机性和偶然性。第三类是模糊性模型,即模型的背景及关系具有模糊性

  • 2021-10-30
  • 阅读387
  • 下载0
  • 52页
  • pdf