正态云模型果蝇优化算法及其应用_邢海霞
提出了一种基于正态云模型的果蝇优化算法(NCMFOA).该算法通过直接将果蝇位置赋值给气味浓度判定值和引入正态云模型来刻画果蝇嗅觉搜索行为的随机性与模糊性,从而解决了果蝇优化算法(FOA)不能搜索负值空间的缺陷,并有效克服了FOA算法在解决复杂优化问题时容易陷入局部极值的不足.通过正态云模型熵值的动态调整,使得NCMFOA算法在进化的前期阶段具有较强的随机性与模糊性,以提高算法的全局探索能力;随着迭代次数的增加,算法搜索行为的随机性与模糊性逐渐减弱,使得其局部开发能力逐渐增强,算法收敛精度得到提高.此外,通过引入视觉实时更新方案,进一步加速了算法的收敛速度.用经典的基准测试函数验证了NCMFOA算法的可行性与有效性,结果表明该算法具有收敛速度快、收敛精度高以及鲁棒性好等优点,对于高维复杂优化问题,该算法同样获得了良好的优化效果.将NCMFOA算法用于解决混沌系统的参数估计问题,进一步验证了该算法具有较强的解决实际工程优化问题的能力.
- 2021-04-20
- 阅读157
- 下载0
- 11页
- pdf