2月25日消息,科技部正式印发《关于加强科技创新促进新时代西部大开发形成新格局的实施意见》(以下简称《意见》)。 《意见》要求,到2025年,西部地区创新环境明显改善,创新能力不断增强,创新产业加快发展。到2035年,西部地区创新格局明显优化,形成以科技创新引领大保护、大开放、高质量发展的新格局。
一些组织使用严重依赖大量历史数据的传统分析技术,新冠疫情袭来时,这些组织意识到了一件重要的事情:许多这些数据模型不再适用。实际上,新冠疫情改变了一切,导致许多数据毫无用处。 反过来,高瞻远瞩的数据团队和分析团队顺势而变:之前采用依赖“大”数据的传统AI技术,现在改而采用一类需要较少量但更多样化的“小”数据的分析技术。
本篇文章重点谈下企业数字化转型。重点还是围绕数字化转型的本质究竟是什么?企业如何进行数字化转型这两个关键点。 前面我谈得比较多的是云原生,微服务,中台等,而这些本身仅仅是数字化转型能力框架中的技术支撑平台底座。这个技术平台最终还是需要为业务目标和战略服务,因此搞清楚企业进行数字化转型的内在诉求才是最重要的。
本月初,曾于去年夏季推出高人气语言模型GPT-3的OpenAI研究小组再次公布一套名为DALL-E的全新AI模型。虽然它在热度上不及GPT-3,但却很可能对AI的未来发展拥有更加深远的影响。 简而言之,DALL-E能够将文本描述作为输入,据此生成原始图像输出。(DALL-E这一名称,源自对超现实主义艺术家萨尔瓦多·达利及皮克斯工作室创造的可爱机器人形象WALL-E的致敬。)
有一篇发表在arXiv的论文“Deep Learning and the Global Workspace Theory”提出了一个大胆的猜想(或理论)。两位作者认为,当下的深度学习已经可以基于一个意识模型,即“全局工作空间理论”(GWT),将处理不同模态转换的神经网络即功能模块,结合为一个系统,从而迈向实现通用人工智能的下一个阶段。总结成公式就是:GWT(深度学习)→通用人工智能。
人工智能系统与机器学习的集成是IT领域的下一个重大发展。这将带来科技发展的新浪潮,还将改变组织使用网络安全技术和服务防止网络攻击的方式。 在以往,网络安全是基于签名模式匹配或规则来使用的。随着很多组织依赖防病毒软件改善网络安全性,但是它仅用于检测与签名或病毒定义匹配的恶意软件。
过去十年间,人工智能技术突飞猛进,最疯狂的科幻小说场景现在已经成为我们生活中不可或缺的一部分。十年前,人们在谈论 AI 的理论化和实验,但这些年来,AI 变得更加切实了,也变成了主流。无论是国际标准课程、平台、库、框架、硬件,一切都顺理成章。就算说这十年里取得的成绩奠定了未来的基础,也不为过。 这篇文章将盘点 AI 十年来取得的重要突破。
目前,公安信息系统对公安业务的支撑作用出现了边际效用递减,公安信息化的投入与产出比明显降低,这说明公安信息化遇到了“中等信息化陷阱”,公安信息化建设出现了瓶颈,走入了困境.在跨越“中等信息化陷阱”的过程中,我们主动探索,大胆创新,先行先试,为解决公安信息化发展困境提出了几点对策并进行了一定的探索.
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
中服云作为国内领先的工业物联网平台厂商,其技术架构与功能特性高度适配火山地震监测场景的需求
人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能 发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家 和世界科技强国,按照党中央、国务院部署要求,制定本规划
:整合多模态医学数据,包括图像、文本、声音、 传感器数据和基因组、转录组、蛋白质组等多组学数据,完成 不同时间点、条件下的数据对齐,构建医学科研数据资源库。 利用数据融合模型与方法,提供跨模态标注算法和标注工具, 揭示跨模态数据之间的语义关联性,帮助分析其相互作用和整 合效果,提高诊断和分析的准确性。面向不同类型的数据,提 供计算机视觉、自然语言处理、图学习等多类算法,对多模态 数据进行特征提取、模型训练、统计分析等,以识别疾病标志 物和模式。提供科研合作平台,促进跨学科研究团队的协作, 支持将分析结果转化为临床辅助决策支持工具,辅助医生进行 更准确的诊断和治疗规划。
为抢抓人工智能发展新机遇,支持人工智能技术赋能智能终端产品,推动智能终端产业高质量跨越 式发展,加快建设国际国内领先的人工智能终端产业集聚区,按照《关于加快发展新质生产力进一步推 进战略性新兴产业集群和未来产业高质量发展的实施方案》《深圳市加快打造人工智能先锋城市行动方 案》等文件要求,结合我市实际,制定本行动计划
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南