在最近的几年中,人工智能随着神经网络的突破,得到了巨大的发展,特别在图像、分析、推荐等领域。在人工智能快速发展的同时,计算规模不断扩大、专家系统过于单一、神经网络模型的灵活性、应用领域的复杂行等问题,也在不断升级。在这样的环境下,分布式人工智能的发展被研究机构和大型企业提上日程。分布式人工智能,可以解决集中化人工智能的几个主要问题:? 规模化的计算问题。? 计算模型的拆分训练。? 多智能专家系统的协作。? 多智能体博弈和训练演化,解决数据集不足的问题。? 群体智能决策和智能系统决策树的组织,适应复杂的应用场景,比如工业、生物、航天等领域。? 适应物联网和小型智能设备,联合更多的计算设备和单元。
计算机视觉应用深度学习堪称突破的成功点是 2012 年 ImageNet 比赛,采用的模型是 CNN,而不是 Hinton 搞的RBM 和 DBN 之类,就是 Hinton 学生做出来以他命名的 AlexNet。图像数据的特征设计,即特征描述,一直是计算机视觉头痛的问题,在深度学习突破之前10多年,最成功的图像特征设计 (hand crafted feature)是SIFT,还有著名的Bag of visual words,一种VQ方法。
到目前为止,我们使用的大多数技术都要求我们通过其特征手动分割图像。但是我们实际上可以使用无监督的聚类算法为我们完成此任务。在本文中,我们将讨论如何做到这一点。
从自动驾驶汽车、预测分析应用程序、人脸识别,到聊天机器人、虚拟助手、认知自动化和欺诈检测,人工智能的用例很多。然而,不管 AI 的应用如何,所有这些应用都是有共性的。他们基本上属于七个常见模式中的一个或多个。这七个模式是:超个性化、自主系统、预测分析和决策支持、会话/人机交互、模式和异常、识别系统和目标驱动系统。
基于 AI 的网络运维方案 我曾经是一名网络工程师,经历了360 的架构变革过 程,我个人的技术转型开始更与注网络的监控、自劢化运维、网络可 视化和 AI 应用上;
11月20日,数智·园区行业峰会暨白皮书发布会在北京举办,阿里云重磅推出OneCampus数智园区解决方案,并携手德勤发布数智园区白皮书,共同推动园区行业的数智化升维与技术创新,致力于将园区打造成为“有温度、善感知、智生长”的数字生命体。
基于智慧园区的个性化需求,设计了一种适用于园区安防管理的多维度安全防护体系。该体系结合园区自身特点,以人员分类管理和五级纵深防御为基准,以“人防、物防、技防”为手段,建立了多维度安全防护体系模型,通过多元化安防措施相结合,实现园区重点区域可视化、人员管理精细化和整体防护智能化。关键词:智慧园区;多维度;安全防护体系
AI人工智能无人值守停车场管理系统,LCD屏的高速车牌识别道闸一体机,既可扫码付,0.6秒高速道闸,快速通行。AI人工智能基于GPU, 速度比现在的CPU快几百上千倍, 通过对停车场海量的车辆进出图片做深度学习,就可以实现对车牌、车型、车标、车脸、车窗等特征的精准识别, 对有牌车、无牌车的识别准确率无限接近100%, 避免人工干预;车主通过扫码付等移动支付方便的完成自助缴费,从而实现停车场的无人值守。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
中服云作为国内领先的工业物联网平台厂商,其技术架构与功能特性高度适配火山地震监测场景的需求
人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能 发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家 和世界科技强国,按照党中央、国务院部署要求,制定本规划
:整合多模态医学数据,包括图像、文本、声音、 传感器数据和基因组、转录组、蛋白质组等多组学数据,完成 不同时间点、条件下的数据对齐,构建医学科研数据资源库。 利用数据融合模型与方法,提供跨模态标注算法和标注工具, 揭示跨模态数据之间的语义关联性,帮助分析其相互作用和整 合效果,提高诊断和分析的准确性。面向不同类型的数据,提 供计算机视觉、自然语言处理、图学习等多类算法,对多模态 数据进行特征提取、模型训练、统计分析等,以识别疾病标志 物和模式。提供科研合作平台,促进跨学科研究团队的协作, 支持将分析结果转化为临床辅助决策支持工具,辅助医生进行 更准确的诊断和治疗规划。
为抢抓人工智能发展新机遇,支持人工智能技术赋能智能终端产品,推动智能终端产业高质量跨越 式发展,加快建设国际国内领先的人工智能终端产业集聚区,按照《关于加快发展新质生产力进一步推 进战略性新兴产业集群和未来产业高质量发展的实施方案》《深圳市加快打造人工智能先锋城市行动方 案》等文件要求,结合我市实际,制定本行动计划
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南