随着大数据时代来临,政府、大型集团公司的数据资源需要加强利用,政府、大型集团公司的大数据需要顶层设计。基于此,阐述了数据资源规划与设计的方法和步骤,通过梳理业务库、主题库、共性库,建立数据标准,设计数据服务体系。在此基础上,提出大数据中心的功能规划,通过数据集成、数据整理建立良好的数据基础,以实现知识管理和数据分析决策。
关注目标、关注价值 01 端到端的价值流交付 02 度量、复盘 03 建立价值检验闭环
需求:语音在产生和传输过程中,易受各种各样的噪声干扰,严重影响语音识别等技术的性能,如何从含噪语音中提取尽可能纯净的原始语音? 定义:语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术
要想了解大数据的数据采集过程,首先要知道大数据的数据来源,目前大数据的主要数据来源有三个途径,分别是物联网系统、Web系统和传统信息系统,所以数据采集主要的渠道就是这三个。传统信息系统的数据采集往往与业务流程关联紧密,未来行业大数据的价值将随着产业互联网的发展进一步得到体现。
更好的客户体验:这是数字化转型的核心重点领域之一也因此是好处之一。 降低运营成本:考虑到利润压力和,通过流程和机器人等降低服务成本是可带来的好处。 更好的合规性:正确执行数字化有助于使风险和合规性管理成为运营不可或缺的一部分。 有效的风险管理:使得企业可以在各个级别上管理企业风险和控制风险向量从而实现数字化规划的目标和结果。 更深刻的客户见解:无论是针对客户进进行细分,做流失预测的客户分析,还是计算购买倾向,客户分析都有许多新方式实现获客、转化、留存和扩大收益。 数据驱动的决策:仪表盘,公司的实时脉搏,预测分析有助于更好地制定战略和优化决策。数据驱动的决策是转型企业的一个关键数字化里程碑。 消除孤岛的减少:借助数字化转型,实现流程统筹编排和功能开发。 新的业务模型,新的产品和更好的机会:从数据获利到遍及全球边界,从产品的大规模定制到实现精确的个性化,数字化使一切成为可能和可行。 增强员工能力:一种以客户为中心,以员工为中心的精神和精神氛围的数字文化可以帮助员工感到被赋予权力,并超越传统上定义的角色边界。虚拟化允许在任何地方进行工作访问。BYOD使您无需太多工具即可轻松完成工作。 合作:数字技术和数字思维促进内部合作,并与生态系统合作伙伴进行外部合作。
将数据标准转换为技术规则,对数据进行定期稽查,督促数据负责人整改数据,及时掌握数据的情况
为什么说信息模型是工业数字化转型的一个关键基础?又为什么在国内讨论工业数字化转型很少有人提及信息模型呢?这是本文着重探讨的两个问题。
应急指挥中心是一个指挥中心,具有保障公共安全和处置突发公共事件的能力,最大程度地预防和减少突发公共事件及其造成的损害,保障公众的生命财产安全,维护国家安全和社会稳定,促进经济社会全面、协调、可持续发展。
没有账户,需要注册
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
在工业过程监测中,长期平稳特征在表示基本统计信息方面起着重要作用。然而,基于自编码器的方法通过实现原始数据的数值近似来提取深度特征,这可能会导致隐藏的平稳信息的破坏。为了解决这个问题,本文提出了一种基于平稳特征重构的协整堆叠自编码器模型,以在模型训练过程中保持长期均衡关系。推理标准。通过重构平稳特征,所提出的网络能够保留非平稳变量之间的有益关系。最后,在两种情况下验证了所提出方法的故障检测性能。
钢包炉气精炼、钢水温度、极梯度升压;光梯度增强机;灰狼优化:SHapley加法运算
现代工业装置普遍表现出规模大、过程长、多单元协同作业的特点,这使得时空分布具有内在性,质量稳定性通常难以保证。本文提出了一种基于质量相关时空信息分析的多单元协同监控框架。在该框架中,分别从单元级和过程级分析时空属性。首先,对于每个操作单元,采用当前特征提取策略构建质量监督时空支持区域。在该策略中,时间动态特征由具有注意力机制的长短期记忆(LSTM)网络提取。同时,利用互信息核主成分分析方法提取空间特征。其次,对于全厂过程,构建了一个三阶多单元时空特征张量进行特征融合。通过张量分解位置,探索了单元之间的相互关联和过程中的质量继承,并将原始特征空间分解为几个子空间。最后,在子空间上开发了一个多单元协同监测模型,并通过贝叶斯融合给出了综合监测结果,可以对监测结果进行合理的解释。所提出的框架在实际的热轧带钢生产过程中得到了验证。
现代制造过程通常包含多个子过程,过程变量的时空特征难以提取,这给传统的质量相关故障诊断带来了重大挑战。为了解决这个问题,我们提出了一种由图注意力网络驱动的故障检测模型——集成门控递归单元规范变量分析(GATRU-CVA)。首先,利用领域专家的知识和历史数据构建子块知识图。接下来,为全局变量构建了图注意力网络(GAT)的空间特征提取器。此外,使用子块知识图将全局空间特征划分为子块,并构建相应的时间特征提取器。然后,考虑到过程动态特性,使用CVA基于时空特征对过程进行建模,并计算相应的统计数据。阈值由核密度估计器(KDE)方法确定。最后,使用热轧带钢机过程(HSMP)的实际生产数据来验证所提出的模型。结果表明,该方法对HSMP的正确监测率(CMR)为97%与其他比较故障检测方法相比。关键词:规范变量分析、故障检测、门控递归单元(GRU)、图注意力网络(GAT)知识图。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南