【IEEETIM】基于全局局部慢特征分析的深度学习工业过程异常工况识别
确保工业过程的长期安全高效运行依赖于对异常操作条件的实时识别。然而,工业过程经常在不同的操作条件之间切换,并面临苛刻的生产环境。因此,历史异常样本中存在的一些极端情况可以掩盖一些轻微的异常,使其表现出与正常操作条件相似的过程动力学。为了解决这个问题,本研究提出了一种基于全局局部慢特征分析的卷积神经网络(GLSFA-NN)。全局慢特征分析(SFA)模型在宏观层面提取粗尺度慢特征,以区分具有不同过程动力学的异常,而局部SFA算法在微观层面提取实时和精细尺度慢特征以识别具有相似过程动力学的异常。通过结合全局和局部慢特征,可以同时识别具有相似或不同动力学的异常。然后使用一维卷积神经网络(1-D-CNN)从全局局部慢速特征中自动提取深度特征,并识别异常操作条件。工业实验表明,该方法优于其他传统方法,对具有切换条件和极端情况的工业过程具有较高的异常识别精度