基于深度学习的数据驱动建模对于工业过程中的在线产品质量预测至关重要。从传感器变量中提取潜在的数据交互是各种数据驱动建模应用的核心。通常,由于操作条件的变化和传感器调谐问题,观察到的变量表现出非平稳特性。这些波动不可避免地影响了传统特征提取方法的可靠性,从而阻碍了它们的应用。因此,本文提出了一种名为横向感知深度注意力图卷积网络(RaDA-GCN)的新方法来探索传感器变量之间的潜在相互作用,RaDA-GPN巧妙地将注意力机制融入图卷积层中,根据其重要性提取非线性变量相关特征,然后设计了一种新的残差感知连接模块来减少数据不确定性并减轻过度平滑。通过巧妙地堆叠多个注意力图卷积层并集成残差感知连接,可以获得深层结构特征,从而有效地量化和揭示数据变量之间的潜在关系。最后,基于所提出方法的预测建模框架的应用验证了其在实际工业过程数据中的有效性。“实验结果表明,与传统的图卷积网络方法相比,所提出的RaDA-GCN方法的R平方(R')指标提高了23%,均方根误差(RMSE)降低了13%。 关键词:深度学习、质量预测、图卷积网络、注意力机制、残差感知连接、工业过程
由于工业过程中测量技术和成本的限制,在均匀采样率下很难获得具有不同特性的变量(如流量和温度)的测量值。这导致所收集的工业过程数据普遍存在多速率采样特性,给工业过程的质量预测带来了巨大挑战。为了解决这个问题,本文提出了一种基于Transformer模型的新型质量预测建模方法,称为多速率工业过程的多速率成形器。首先,通过将数据变量排列到相同的采样率来对原始数据进行分块。然后,通过多层卷积网络和变换器完成数据的分层粗粒度和细粒度互补。值得注意的是,提出了一种新的采样型编码方法来探索多速率过程数据的缺失模式。经过上述预训练后,为后续的微调过程提供了修补的完整数据集和更好的初始权重。最后,利用质量变量的多步预测误差对整个网络参数进行微调。该方法应用于工业脱丁烷塔和实际工业加氢裂化过程的多速率多步预测。实验结果表明,在处理多采样率类型的工业过程数据方面,该方法优于其他最先进的方法。关键词:多速率工业过程,多速率成形器,多步预测,采样类型编码。
3D 视觉感知对于自动驾驶和机器人等应用至关重要。虽然基于摄像头的 3D 物体检测方法因其成本效益和检测远距离物体的能力而受到关注,但它们在效率和准确性方面存在困难,尤其是在处理跨多个摄像头视图的信息时。鸟瞰图 (BEV)是自动驾驶中的一种常见表示,因为它可以提供对周围环境的清晰空间理解。但是,从 2D 图像生成强大的 BEV 特征以用于 3D 物体检测等任务具有挑战性。BEVFormer 论文介绍了一种使用时空变换器生成 BEV 特征的新方法 BEVFormer 。与以前的方法不同,BEVFormer 不依赖深度信息,可以动态聚合空间和时间信息。
一款,适用于,多个,场景,开源,工业物联网平台,中服云工业物联网平台,业界领先的工业物联网平台
开源,一款,基于,go,语言,开发,商业级,saas,云原生,微服务,工业物联网平台,中服云工业物联网平台
中服云物联网平台,业界领先,功能强大
准确模拟大型锂离子电池(LLBs)的电化学过程,包括估计过程中的电化学状态分布,对于LLBs的设计和管理至关重要。基于二维物理的模型可以准确地描述LLB的电化学过程。然而,由于存在复杂的偏微分方程(PDE),求解模型成为一项具有挑战性的任务。本文开发了一个物理信息复合网络(PlCN)作为二维物理模型的替代模型。具体来说,PlCN由四个深度神经网络(DNN)组成,分别估计四个关键电化学状态的分布。由于PlCN的架构受到PDE特性的启发,它可以通过四个轻量级DNN实现高精度。此外,通过结合物理和数据,PlCN使用有限的数据实现了准确的估计。它甚至可以估计可能无法直接测量的电化学状态分布。MoreoverPICN提出了一种基于低频信息的预训练策略和两阶段损失平衡策略,以解决PlCN训练中可能出现的收敛失败和损失不平衡问题。PlCN是通过将物理与数据相结合来模拟LLBs电化学过程的新尝试。大量实验表明,它比最先进的模型要好。 关键词:数据、电化学过程、锂离子电池、物理学、替代模型。
对于机械系统的预测和健康管理,一项核心任务是预测机器的剩余使用寿命(RUL)。目前,具有自动特征学习的深度结构,如长短期记忆(LSTM),在RUL预测方面取得了很好的性能。然而,传统的LSTM网络只使用最后一个时间步的学习特征进行回归或分类,效率不高。此外,一些具有领域知识的手工制作的特征可能会为RUL的预测提供额外的信息。因此,将这些手工制作的特征和自动学习的特征集成到RUL预测中是非常有动力的。在这篇文章中,我们提出了一种基于注意力的深度学习框架,用于机器的RUL预测。LSTM网络用于从原始数据中学习序列特征。同时,所提出的注意力机制能够学习特征和时间步长的重要性,并为更重要的特征和时间步分配更大的权重。此外,开发了一个特征融合框架,将人工生成的特征与自动学习的特征相结合,以提高RUL预测的性能。对两个真实数据集进行了广泛的实验,实验结果表明,我们提出的方法优于现有技术。 关键词:注意力机制、特征融合手工特征、长短期记忆(LSTM)、机器剩余使用寿命(RUL)预测、预后和健康管理(PHM)。
没有账户,需要注册
包括集团管控系统、工厂系统、开发发布系统、运维管理系统、网关系统5大子系统,旨在实现集团内部多工厂、多部门之间的协同管理和数据共享。通过构建一体化的工业物联网平台,整合各工厂的生产、设备数据和资源,打造集团统一的工业操作系统底座,为集团提供统一的管理视角和决策依据,提升集团整体运营效率和协同效应
清华之后,北大也不甘示弱,推出了DeepSeek教程。清华的教程是传媒学院出的,而北大的这份文件是人工智能学院和计算机学院出的,所以总体上内容更加专业、全面和深入,尤其还提到了AI时代工作和技能需求的变化,可以说是不可多得的优质资料。
成都市作为中国国家中心城市,秉承“创新、协调、绿色、开放、 共享”理念,运用 CIM 平台+免接口数据集成技术,打造城市大脑, 推行网络理政。通过接入市、区(市)县两级部门信息系统,融合政 府、企业和社会数据,以网络理政为城市大脑中枢,构建能在线监测、 能分析预测、能应急指挥的智能城市治理运行体系,提升城市治理能 力。
本书在实践积累与行业洞察基础上,试图对一系列关键问题做出解答:工业大模型与通用大模型有何不同?工业大模型的技术体系与关键技术何在?工业大模型赋能的重点领域和主要场景包括哪些?我国和全球工业大模型的产业生态如何?
无线经济作为数字经济的重要组成部分,是创新最活跃、增长速度最快、影响最广泛的领域之一,对增强发展新动能、提升发展韧性、畅通发展循环具有重要作用,是培育壮大新质生产力的重要支撑。2023年,我国5G、卫星互联网等无线技术创新持续取得突破无线经济总体规模稳步增长,支撑了新质生产力的积累壮大。
自 1997 年起,中国互联网络信息中心(CNNIC)定期组织开展中国互联网 络发展状况统计调查工作,每年发布两次《中国互联网络发展状况统计报告》(以 下简称《报告》),至今已持续发布 54 次。《报告》力图通过统计数据真实反 映我国互联网络建设发展历程,成为我国政府部门、国内外行业机构、专家学者 和广大人民群众了解中国互联网发展状况的重要参考。
数字贸易是继货物贸易、服务贸易之后的新兴贸易形态。积极参与数字经贸规则制定、大力发展数字贸易,已成为世界各国把握数字时代机遇的普遍选择。数字经贸规则对数字贸易发展兼具“加速器”和“稳定器”作用。
云计算技术“人工智能+”融合趋势明显,赋能多产业加快形成新质生产力。在“智转数改”的新需求下,企业上云用云需求不断深化,对应用现代化能力、稳定性保障能力、云原生安全能力、云成本优化能力、垂直类应用能力以及云算融合能力等方面要求不断提升,带动相关技术创新发展,特别是云计算与智算的加速融合推动人工智能技术发展和应用快速革新。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南