一款,适用于,多个,场景,开源,工业物联网平台,中服云工业物联网平台,业界领先的工业物联网平台
本文将介绍ChatGPT的特点、功能、技术架构、局限、产业应用、投资机会和未来。
很多应用程序在面临客户端请求时,可以等价为进行如下的系统调用: 1. File.read(file, buf, len); 2. Socket.send(socket, buf, len); 例如消息中间件 Kafka 就是这个应用场景,从磁盘中读取一批消息后原封不动地写入网卡(NIC,Network interface controller)进行发送。 在没有任何优化技术使用的背景下,操作系统为此会进行 4 次数据拷贝,以及 4 次上下文切换
在“十四五”新的发展阶段,通过大量的方案积累,数字已经成长为实力强劲的智能工厂整体解决方案提供商,无论从平台技术、人才储备、产品构成、服务体系等多方面已构成了不可替代的核心竞争力。
对于机械系统的预测和健康管理,一项核心任务是预测机器的剩余使用寿命(RUL)。目前,具有自动特征学习的深度结构,如长短期记忆(LSTM),在RUL预测方面取得了很好的性能。然而,传统的LSTM网络只使用最后一个时间步的学习特征进行回归或分类,效率不高。此外,一些具有领域知识的手工制作的特征可能会为RUL的预测提供额外的信息。因此,将这些手工制作的特征和自动学习的特征集成到RUL预测中是非常有动力的。在这篇文章中,我们提出了一种基于注意力的深度学习框架,用于机器的RUL预测。LSTM网络用于从原始数据中学习序列特征。同时,所提出的注意力机制能够学习特征和时间步长的重要性,并为更重要的特征和时间步分配更大的权重。此外,开发了一个特征融合框架,将人工生成的特征与自动学习的特征相结合,以提高RUL预测的性能。对两个真实数据集进行了广泛的实验,实验结果表明,我们提出的方法优于现有技术。 关键词:注意力机制、特征融合手工特征、长短期记忆(LSTM)、机器剩余使用寿命(RUL)预测、预后和健康管理(PHM)。
准确模拟大型锂离子电池(LLBs)的电化学过程,包括估计过程中的电化学状态分布,对于LLBs的设计和管理至关重要。基于二维物理的模型可以准确地描述LLB的电化学过程。然而,由于存在复杂的偏微分方程(PDE),求解模型成为一项具有挑战性的任务。本文开发了一个物理信息复合网络(PlCN)作为二维物理模型的替代模型。具体来说,PlCN由四个深度神经网络(DNN)组成,分别估计四个关键电化学状态的分布。由于PlCN的架构受到PDE特性的启发,它可以通过四个轻量级DNN实现高精度。此外,通过结合物理和数据,PlCN使用有限的数据实现了准确的估计。它甚至可以估计可能无法直接测量的电化学状态分布。MoreoverPICN提出了一种基于低频信息的预训练策略和两阶段损失平衡策略,以解决PlCN训练中可能出现的收敛失败和损失不平衡问题。PlCN是通过将物理与数据相结合来模拟LLBs电化学过程的新尝试。大量实验表明,它比最先进的模型要好。 关键词:数据、电化学过程、锂离子电池、物理学、替代模型。
中服云物联网平台,业界领先,功能强大
开源,一款,基于,go,语言,开发,商业级,saas,云原生,微服务,工业物联网平台,中服云工业物联网平台
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址