本研究基于POD(Proper Orthogonal Decomposition,正交分解)方法,聚焦于建立一个降阶模型(Reduced-order Model, ROM),用于预测围绕静止物体的非定常流动,同时允许将物体几何形状作为参数进行变换。传统的POD方法仅适用于所有快照数据在同一计算网格下采样的情况。本研究提出了一种新型POD方法,该方法可以处理包含不同物体形状的流场快照数据,并且这些快照是通过不同计算网格数值模拟获得的。提出的POD方法引入了将流场数据映射到计算空间中的概念,从而在计算空间中得到最小化物理空间中重构误差的最佳POD基函数。该POD方法被应用于通过保角映射(conformal mapping)将椭圆形流场变换为圆柱形的实验中。基于提出的POD基函数,成功重构了具有不同长宽比的椭圆及不同形状翼型周围的流场。通过所提出的POD基函数得到的ROM,可以稳定地预测不在原快照数据中的物体流场的时间演化行为。在ROM中,POD快照中的流场频率与重构流场的频率之间的差异导致了相位误差,这归因于时间演化。然而,通过ROM获得的流场与直接求解Navier–Stokes(纳维–斯托克斯)方程得到的流场之间的均方误差小于。此外,重构的流场中包含与卡门涡街后方涡量频率一致的流动特征。基于上述观察结果,本研究提出的POD方法适用于通过降阶模型(ROM)重构围绕不同几何形状的流场。