• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

RNN和CNN的区别表现在哪些方面?

RNN(循环神经网络),和CNN(卷积神经网络)是深度学习经常进行比较的两个概念,下面小编整理了RNN和CNN的一些区别,希望对大家有所帮助。 1.从应用方面来看CNN主要用于图像识别比较多,而RNN被用于语言处理多一些,主要用于时序和NLP RNN的假设——事物的发展是按照时间序列展开的,即前一刻发生的事物会对未来的事情的发展产生影响。 CNN的基础的假设——人类的视觉总是会关注视线内特征最明显的点 2.当RNN、CNN都用于NLP时,它们的区别在于:

  • 2023-02-27
  • 阅读189

RNN基本原理和RNN种类与实例

之前提到的CNN模型主要用到人类的视觉中枢,但其有一劣势,无论是人类的视觉神经还是听觉神经,所接受到的都是一个连续的序列,使用CNN相当于割裂了前后的联系。从而诞生了专门为处理序列的Recurrent Neural Network(RNN),每一个神经元除了当前信息的输入外,还有之前产生的记忆信息,保留序列依赖型。

  • 2023-02-27
  • 阅读203

循环神经网络(RNN)简介

循环神经网络英文名称为 (Recurrent Neural Network, RNN),其通过使用带自反馈的神经元,能够处理任意长度的时序数据。

  • 2023-02-27
  • 阅读204

循环神经网络(RNN)简易教程

我们从以下问题开始 循环神经网络能解决人工神经网络和卷积神经网络存在的问题。 在哪里可以使用RNN? RNN是什么以及它是如何工作的? 挑战RNN的消梯度失和梯度爆炸 LSTM和GRU如何解决这些挑战 假设我们正在写一条信息“Let’s meet for___”,我们需要预测下一个单词是什么。下一个词可以是午餐、晚餐、早餐或咖啡。我们更容易根据上下文作出推论。假设我们知道我们是在下午开会,并且这些信息一直存在于我们的记忆中,那么我们就可以很容易地预测我们可能会在午餐时见面。 当我们需要处理需要在多个时间步上的序列数据时,我们使用循环神经网络(RNN)

  • 2023-02-27
  • 阅读192

一文搞懂RNN(循环神经网络)基础篇

他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。 比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列; 当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。 以nlp的一个最简单词性标注任务来说,将我 吃 苹果 三个单词标注词性为 我/nn 吃/v 苹果/nn。

  • 2023-02-27
  • 阅读197

一文详解什么是RNN(循环神经网络)

循环神经网络的应用场景比较多,比如暂时能写论文,写程序,写诗,但是,(总是会有但是的),但是他们现在还不能正常使用,学习出来的东西没有逻辑,所以要想真正让它更有用,路还很远。

  • 2023-02-27
  • 阅读194

深度学习基础之----BN、LN、IN、GN、SN

?目录 深度学习中的归一化问题 BN(Batch Normalizatioon) BN为了解决什么问题? BN的主要思想 BN伪代码 BN的使用位置 BN的优势 BN存在的问题 LN(Layer Normalization) LN为了解决什么问题? LN的主要思想 LN的优势 IN(Instance Normalization) 为什么提出IN? IN的做法 GN(Group Normalization) 为什么提出GN? GN的主要思想 SN(Switchable Normalization)github 全网最详细、最全面、最易懂的normalization解读

  • 2023-02-27
  • 阅读214

机器学习4个常用超参数调试方法

ML工作流中最困难的部分之一是为模型找到最好的超参数。ML模型的性能与超参数直接相关。

  • 2023-02-26
  • 阅读224
上一页 1 …… 211212213214215216217218219220221 …… 2191 下一页 共 17527 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

低空基础设施发展研究报告(2025)

当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。

  • 阅读151
  • 下载1

华为数字化转型之道

首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,

  • 阅读135
  • 下载1

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读182
  • 下载2

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读210
  • 下载2

最新上线

数据资产管理实践指南(8.0版)

2025年是大数据技术标准推进委员会连续发布《数据资产管理实践指南》的第九年。本研究报告通过持续跟踪前沿政策、技术趋势与行业实践,从数据价值释放工作主线、数据资源化管理体系、数据资产化实施路径及未来发展趋势等方面形成系统化成果。研究报告深入剖析了数据资产管理在政策合规、技术融合、生态协同等维度的挑战与契机,并结合金融、能源、制造等行业案例,提炼出差异化管理路径策略。旨在帮助企事业单位厘清管理逻辑、优化实施策略,将数据资产管理与业务目标深度绑定,最终实现数据要素向高价值产出的有效转化。

  • 阅读14
  • 下载0

AI+智慧农业应用解决方案

鱼群生长环境监控 利用多种智能传感器实时感知鱼塘水温、PH值、融氧量等指标,为生产人员提供数据分析、 远程控制、自动喂食等功能;

  • 阅读15
  • 下载0

中国算力中心行业白皮书2025

灼识咨询通过运用各种资源进行一手研究和二手研究。一手研究包括访谈行业专家和业内人士。二手研究包括分析各种公开发布的数据资源,数据来源包括中华人民共和国国家统计局、上市公司公告等。灼识咨询使用内部数据分析模型对所收集的信息和数据进行分析,通过对使用各类研究方法收集的数据进行参考比对,以确保分析的准确性。

  • 阅读23
  • 下载0

能源行业数据安全管理办法(试行)

炼石是以“免改造”为特色的数据安全产品厂商,国家级专精特新“小巨人”,自研灵活投送多重安全能力的免改造平台,帮政企客户打造领先数据安全保护体系,敏捷交付密评密改合规。

  • 阅读41
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南