第28章 灰色系统理论及其应用

客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解, 人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断 来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章 介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何 对实际问题进行分析和解决。 §1 灰色系统概论 客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互 联系而构成一个整体,我们称之为系统。按事物内涵的不同,人们已建立了工程技术、 社会系统、经济系统等。人们试图对各种系统所外露出的一些特征进行分析,从而弄清 楚系统内部的运行机理。从信息的完备性与模型的构建上看,工程技术等系统具有较充 足的信息量,其发展变化规律明显,定量描述较方便,结构与参数较具体,人们称之为 白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的 物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了 解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。这类系统 内部特性部分已知的系统称之为灰色系统。一个系统的内部特性全部未知,则称之为黑 色系统。 区别白色系统与灰色系统的重要标志是系统内各因素之间是否具有确定的关系。 运动学中物体运动的速度、加速度与其所受到的外力有关,其关系可用牛顿定律以明确 的定量来阐明,因此,物体的运动便是一个白色系统。 当然,白、灰、黑是相对于一定的认识层次而言的,因而具有相对性。某人有一 天去他朋友家做客,发现当外面的汽车开过来时,他朋友家的狗就躲到屋角里瑟瑟发抖。 他对此莫名其妙。但对他朋友来讲,狗的这种行为是可以理解的,因为他知道,狗在前 不久曾被汽车撞伤过。显然,同样对于“狗的惧怕行为”,客人因不知内情而面临一个 黑箱,而主人则面临一个灰箱。 作为实际问题,灰色系统在大千世界中是大量存在的,绝对的白色或黑色系统是 很少的。随着人类认识的进步及对掌握现实世界的要求的升级,人们对社会、经济等问 题的研究往往已不满足于定性分析。尽管当代科技日新月异,发展迅速,但人们对自然 界的认识仍然是肤浅的。粮食作物的生产是一个实际的关系到人们吃饭的大问题,但同 时,它又是一个抽象的灰色系统。肥料、种子、农药、气象、土壤、劳力、水利、耕作 及政策等皆是影响生产的因素,但又难以确定影响生产的确定因素,更难确定这些因素 与粮食产量的定量关系。人们只能在一定的假设条件(往往是一些经验及常识)下按照 某种逻辑推理演绎而得到模型。这种模型并非是粮食作物生产问题在理论认识上的“翻 版”,而只能看作是人们在认识上对实际问题的一种“反映”或“逼近”。 社会、经济、农业以及生态系统一般都会有不可忽略的“噪声”(即随即干扰)。 现有的研究经常被“噪声”污染。受随机干扰侵蚀的系统理论主要立足于概率统计。通 过统计规律、概率分布对事物的发展进行预测,对事物的处置进行

  • 2021-10-31
  • 阅读252
  • 下载0
  • 52页
  • pdf

第22章 模糊数学模型

1 模糊数学的基本概念 1.1 模糊数学简介 1965 年,美国著名计算机与控制专家查德(L.A.Zadeh)教授提出了模糊的概念,并 在国际期刊《InformationandControl》并发表了第一篇用数学方法研究模糊现象的论文 “Fuzzy Sets”(模糊集合),开创了模糊数学的新领域。 模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼性”。如高个子 与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有 这种模糊的现象,如选举一个好干部,但怎样才算一个好干部?好干部与不好干部之间 没有绝对分明和固定不变的界限。这些现象很难用经典的数学来描述。 模糊数学就是用数学方法研究与处理模糊现象的数学。它作为一门崭新的学科,它 是继经典数学、统计数学之后发展起来的一个新的数学学科。经过短暂的沉默和争议之 后,迅猛的发展起来了,而且应用越来越广泛。如今的模糊数学的应用已经遍及理、工、 农、医及社会科学的各个领域,充分的表现了它强大的生命力和渗透力。 统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然 现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即 从精确现象到模糊现象。 实际中,我们处理现实的数学模型可以分成三大类:第一类是确定性数学模型,即 模型的背景具有确定性,对象之间具有必然的关系。第二类是随机性的数学模型,即模 型的背景具有随机性和偶然性。第三类是模糊性模型,即模型的背景及关系具有模糊性

  • 2021-10-30
  • 阅读233
  • 下载0
  • 52页
  • pdf