• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

工业互联网驱动下的数字资产优化配置

从数据管理到数据资产运营,其实质是通过数据资源的价值获取实现企业资源的高效优化配置。数据的治理、数据的增长、数据资产的运营,需要通过扶持生态赋能者,形成行业协同和数据资产管理模式协同。在工业互联网应用驱动下,企业智能制造内循环与工业互联网的外循环必然会催生一批新工具、新的商业模式以及基于数据资产运营的第三方生态平台,将成为产业数字化专业化分工的关键,从而推动生产力与生产关系的良性发展。

  • 2021-04-11
  • 阅读310
  • 下载0
  • 8页
  • docx

《阿里巴巴Java开发手册》(v1.1.0版)册数

阿里巴巴,java,开发,手册,v1.1.0,版,册数

  • 2021-04-10
  • 阅读302
  • 下载1
  • 37页
  • pdf

重学Java设计模式

本书属于实战型而不是理论介绍类书籍,每章节都有对应的完整代码,学习的过程需要参考书中的章节与代码一起学习,同时在学习的过程中需要了解并运用代码。学习完成后进行知识点的总结,以及思考这样的设计模式在业务场景中需要如何使用。

  • 2021-04-09
  • 阅读1460
  • 下载10
  • 267页
  • pdf

SpringBoot实战

Spring Boot为开发者带来了更好的开发体验,但写完代码只是万里长征路上的一小步,后续的运维工作才是让很多人真正感到无助的。Spring Boot在运维方面做了很多工作,部署、监控、度量,无一不在其涉猎范围之内,结合Spring Cloud后还可以轻松地实现服务发现、服务降级等功能。

  • 2021-04-09
  • 阅读1320
  • 下载1
  • 225页
  • pdf

Shiro教程

Shiro 可以非常容易的开发出足够好的应用,其不仅可以用在JavaSE 环境,也可以用在JavaEE 环境。Shiro 可以帮助我们完成:认证、授权、加密、会话管理、与Web 集成、缓存等。

  • 2021-04-09
  • 阅读1313
  • 下载1
  • 219页
  • pdf

Transformer在语义分割上的应用

语义分割方法主要采用具有编码器-解码器体系结构的全卷积网络(FCN)。编码器逐渐降低空间分辨率,并通过更大的感受野学习更多的抽象/语义视觉概念。由于上下文建模对于分割至关重要,因此,最新的工作集中在通过以扩张/空洞卷积或插入注意模块来增加感受野。但是,基于编码器/解码器的FCN体系结构保持不变。在本文介绍的文章中,作者旨在通过将语义分割视为序列到序列的预测任务来提供替代。具体而言,作者部署了一个纯transformer(即不使用卷积和不存在分辨率降低的情况)来对图像按patch的顺序进行编码。借助在transformer的每层中建模的全局上下文,可以将此编码器与简单的解码器组合起来,以提供功能强大的分割模型,称为SEgmentation TRANSformer(SETR)。

  • 2021-04-09
  • 阅读602
  • 下载0
  • 7页
  • pdf

一个卷积就可以隐式编码位置信息

对于 transformer 来说,由于 self-attention 操作是 permutation-invariant 的,所以需要一个 positional encodings(PE)来显示地编码 sequence 中 tokens 的位置信息。ViT 模型是采用学习的固定大小的 positional embedding,但是当图像输入大小变化时,就需要对positional embedding 来插值来适应输入 tokens 数量带来的变化,这一过程会造成性能损失。这里介绍的 CPVT,就主要来解决这个问题,CPVT 的解决方案是引入一个带有 zero-padding 的卷积来隐式地编码位置信息jPEG),从而省去了显式的 positional embedding,最重要的是 CPVT 模型在输入图像大小变化时性能是稳定的。PVT 这种特性是很多图像任务所需要的,比如分割和检测往往需要大小变化的输入图像。

  • 2021-04-09
  • 阅读382
  • 下载0
  • 8页
  • pdf

“进化”的搜索方式:揭秘微软语义搜索背后的技术

作为一项云搜索服务,Azure 认知搜索集成了强大的 API 和工具,帮助开发人员构建丰富的搜索体验。不止于现状,微软的研究员们为 Azure 认知搜索“加持”了语义搜索功能,可以让搜索引擎拥有语义排序、语义摘要、语义高亮、语义问答以及自动拼写校正等能力。本文将揭晓这些神奇功能背后的核心技术,涉及关键词包括预训练、图网络、多任务等。本文编译自微软研究院博客“The science behindsemantic search: How AI from Bing is powering Azure Cognitive Search”。

  • 2021-04-09
  • 阅读215
  • 下载0
  • 11页
  • pdf
上一页 1 …… 1624116242162431624416245162461624716248162491625016251 …… 16461 下一页 共 131682 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读84
  • 下载1

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读78
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读90
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读135
  • 下载4

最新上线

算力是人工智能的基础设施

机器学习与深度学习有着明显的异同点 在数据准备和预处理方面,两者是很相似的。他们都可能对数据进行一些操作:数据清洗、数据标签、归一化、去噪、降维。核心区别:传统机器学习的特征提取主要依赖人工,针对特定简单任务的时候人工提取特征会简单有效,但是并不能通用;深度学习的特征提取并不依靠人工,而是机器自动提取的。这也是为什么都说深度学习的可解释性很差,因为有时候深度学习虽然能有好的表现,但是我们并不知道他的原理是什么。

  • 阅读14
  • 下载0

2026六大未来产业发展趋势与人工智能八大落地场景洞察

2025年是中国人工智能规划中期规划的关键节点,AI场景解决方案从“能用”到“有用”到“好用”在垂2025年中国AI产品在用户规模与产品数量上已具备全球竞争力

  • 阅读14
  • 下载0

城市低空经济创新发展白皮书

当今世界,低空经济正以前所未有的速度重塑产业格局与城市发展模式。作为融合通用航空、无人机应用、智能网联、先进制造等多领域的新质生产力代表,低空经济不仅承载着缓解城市交通压力、提升公共服务效能、培育经济增长新动能的使命,更成为衡量国家和地区科技创新与产业竞争力的关键指标。中国低空经济市场规模有望在2032年达到2.5万亿规模,其广阔前景吸引全球目光。然而,产业爆发式增长的背后,空域资源释放不足、基础设施系统性瓶颈、技术标准体系滞后、商业模式成熟度低、公众信任度待提升等核心挑战,正深刻制约着低空经济从“试点探索”迈向“全域协同”的规模化发展进程。

  • 阅读24
  • 下载1

新型智慧城市是推动城市高质量发展以及经济发展的重要途径

新型智慧城市是推动城市高质量发展以及经济发展的重要途径新型智慧城市是推动城市高质量发展以及经济发展的重要途径新型智慧城市是推动城市高质量发展以及经济发展的重要途径

  • 阅读16
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南