面向人工智能的数据治理实践指南(1.0)
自 1988 年由麻省理工学院的学者启动了全面数据质量管理计划(TDQM)以来,随着大数据技术的迅猛发展,企业内数据量急剧上升,数据治理的内涵也在不断地变化和丰富。2021 年,随着以大模型为代表的生成式人工智能技术席卷全球,对人类的生产和生活都带来了革命性的变化,人工智能的发展从以模型为中心转变为了以数据为中心。以数据为中心的人工智能理论认为,好的人工智能需要高质量、大规模和多样性的数据。但在实践过程中,数据科学家们往往会遇到数据安全与隐私泄露、内容输出偏见与歧视以及数据“高量低质”的问题。如果放任这些问题不加管制,将会阻碍人工智能技术的进一步发展,甚至会危害个人、企业甚至国家的安全。