• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

PEIV模型WTLS估计的Fisher_Score算法_赵俊

考虑系数矩阵含非随机元素和不同位置含相同随机元素的结构化特征,PEIV (partial errors-in-variables)模型较一般的EIV模型更为严格。现有PEIV模型加权整体最小二乘(weighted total least squares,WTLS)估计算法需多次迭代,影响计算效率。通过利用观测值误差和系数矩阵误差的统计性质构造非线性目标函数,并以此推导了新的PEIV模型WTLS估计的计算公式,同时设计了相应的Fisher-Score算法。算例分析结果表明,相比较而言,Fisher-Score算法迭代次数较少,计算效率得到大大提升。

  • 2021-05-07
  • 阅读607
  • 下载0
  • 7页
  • pdf

基于机动判别的变结构交互多模型跟踪算法_潘媚媚

临近空间高超声速机动目标具有高速、高机动的运动特性,协同转弯模型是跟踪临近空间目标的常用模型之一。基于协同转弯模型的自适应网格交互多模型(adaptive grid interaction multiple model,AGIMM)算法能够较好地适应临近空间高超声速目标运动特性,但AGIMM算法存在着依赖中心网格模型,非机动时刻模型集收敛缓慢的问题,基于此提出了一种基于机动判别的变结构交互多模型算法。所提算法根据目标机动特性调整跟踪模型集的结构及模型概率转移矩阵,加快了非机动时刻模型集的收敛速度,克服了AGIMM算法存在的问题。通过蒙特卡罗仿真验证,改进的算法相对于AGIMM算法提高了对临近空间高超声速目标的跟踪性能。

  • 2021-05-07
  • 阅读554
  • 下载0
  • 7页
  • pdf

基于波形自适应的认知雷达机动目标跟踪算法_王树亮

从认知雷达的角度出发,综合考虑跟踪模型和波形选择,提出一种能够适应目标运动状态急剧变化的波形自适应机动目标跟踪算法。首先,将匀速运动模型和当前统计模型作为交互式多模型(IMM)的模型集,并结合贝叶斯理论提出一种时变转移概率的自适应IMM算法。然后,结合量测误差椭圆与目标状态预测误差椭圆正交理论,研究了基于基带脉冲波形模糊函数旋转的波形库实现方法并给出了波形自适应选择跟踪算法的具体步骤。仿真实验表明,所提算法能够适应目标不同加速度机动,雷达系统跟踪性能得到了较大幅度提升。

  • 2021-05-07
  • 阅读625
  • 下载0
  • 7页
  • pdf

基于蚁群算法的无人机任务规划优化模型研究_蒋莎

目的】为了研究无人机在灾情巡查中的航径优化问题。【方法】设计了一个蚁群算法求解该问题,并通过仿真实例进行验证。【结果】无人机的航径优化问题是一种具有多约束条件的复杂任务规划问题,将时效性和均衡性为核心的评价体系考虑到问题中,构建一个双目标优化模型,实现了无人机的外部合理分配和内部航径优化。【结论】仿真结果表明提出的模型与算法在解决无人机巡查灾情飞行航径方面具有一定的应用价值。

  • 2021-05-07
  • 阅读594
  • 下载0
  • 7页
  • pdf

正弦选择概率模型的全局最优引导人工蜂群算法_孙辉

针对人工蜂群算法收敛速度慢以及蜜源的选择概率区分度不够等缺点,提出了一种新的改进人工蜂群算法。依据当前最优蜜源、最差蜜源、当前蜜源建立正弦选择概率模型,并结合全局最优引导策略,构成新算法。概率模型以最优、最差蜜源适应值之差为尺度,衡量当前蜜源适应值所占比重,随后将比重值带入sin函数,即可得当前蜜源的选择概率值。在30、100维上,22个基准测试函数的仿真实验结果表明,正弦选择概率模型能克服后期蜜源区分度不够的问题,为观察蜂跟随雇佣蜂提供正确的引导。与知名的改进人工蜂群算法比较,该算法具有很好的优势。

  • 2021-05-07
  • 阅读573
  • 下载0
  • 7页
  • pdf

基于高斯混合部件模型的铁路扣件检测_何彪

针对采集图像中铁路扣件存在形状的变化、扣件图像的光照差异较大和扣件被异物局部遮挡的问题,根据对可变形部件模型算法和高斯混合模型的研究,提出了高斯混合部件模型算法.结合扣件图像边缘特性及改进的Roberts算子计算图像梯度,将归一化后的方向梯度直方图特征作为高斯混合部件模型算法的底层特征,根据扣件形状划分部件,部件之间的相对位置采用星型连接方式度量,运用余弦相似性度量部件中方向梯度直方图特征的相似度,部件模型使用高斯混合模型并采用期望最大化算法迭代求解.将高斯混合部件模型算法应用于扣件检测中,最终平均检测效果为漏检率3.16%、误检率9.80%、正确率90.27%.

  • 2021-05-07
  • 阅读572
  • 下载0
  • 7页
  • pdf

基于主从记忆空间模型的时空上下文跟踪算法_宋勇

提出了一种基于主、从记忆空间模型的时空上下文跟踪算法。该算法将人脑记忆机制融入STC算法的时空上下文模板更新过程,通过构建主、从记忆空间,形成基于记忆的模板更新策略。同时,通过计算置信图多峰值点求取目标位置,提高目标跟踪精度。实验结果表明,所提出的算法可解决目标被遮挡、姿态突变、短暂消失后重现等条件下的跟踪精度下降问题,有利于实现鲁棒性、高精度运动目标跟踪。

  • 2021-05-07
  • 阅读594
  • 下载0
  • 7页
  • pdf

小波矩和HMM的三维CAD模型归类与检索算法_李雨虹

为了在工程应用中检索已有的三维CAD模型,以便重用相应零件的设计信息,节省设计和加工成本,提出一种基于小波矩和仿射不变矩特征融合的隐马尔科夫模型(HMM)三维CAD模型归类与检索算法。对三维模型图进行归一化处理,并分别提取归一化图像的小波矩特征值和仿射不变矩特征值;通过K-W检验算法选择出鲁棒性好、稳定性高的组合不变矩特征并进行编码;构造五类三维模型的样本集,将上述特征值作为HMM的输入观测值,通过修正的添加比例因子的多观测序列Baum-Welch(B-W)算法进行模型的训练与识别。将本文算法与其他三种算法进行实验对比,结果表明,本文所提出的算法具有较好的识别率和检索效率,具有一定的实用价值。

  • 2021-05-07
  • 阅读548
  • 下载0
  • 7页
  • pdf
上一页 1 …… 3435363738394041424344 …… 81 下一页 共 643 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读98
  • 下载1

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读86
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读97
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读138
  • 下载4

最新上线

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读54
  • 下载0

2025全球人工智能展望报告

2025 年,人工智能正式迈入 “智能体元年”,AI Agent?成为驱动产业变革的核心力量,硬件迭代、多模态融合、世界模型演进共同推动行业从 “被动响应” 向 “主动解决复杂问题” 跨越。

  • 阅读10
  • 下载0

算力是人工智能的基础设施

机器学习与深度学习有着明显的异同点 在数据准备和预处理方面,两者是很相似的。他们都可能对数据进行一些操作:数据清洗、数据标签、归一化、去噪、降维。核心区别:传统机器学习的特征提取主要依赖人工,针对特定简单任务的时候人工提取特征会简单有效,但是并不能通用;深度学习的特征提取并不依靠人工,而是机器自动提取的。这也是为什么都说深度学习的可解释性很差,因为有时候深度学习虽然能有好的表现,但是我们并不知道他的原理是什么。

  • 阅读23
  • 下载0

2026六大未来产业发展趋势与人工智能八大落地场景洞察

2025年是中国人工智能规划中期规划的关键节点,AI场景解决方案从“能用”到“有用”到“好用”在垂2025年中国AI产品在用户规模与产品数量上已具备全球竞争力

  • 阅读24
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南