• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

软件可靠性模型算法分析与评价

关于软件可靠性的确切含义,学术界有过长期的争论,经过长期的争论和研究,1983 年美国IEEE计算机学会对。“软件可靠性”一次正式做出如下定义:(1)在规定条件下,在规定的时间内,软件不引起系统失效的概率,该概率是系统输入和系统使用的函数,也是软件中存在的错误的函数:系统输入将确定是否会遇到已存在的错误(如果错误存在的话):(2)在规定的时间周期内,在所述条件下程序执行所要求的功能的能力。

  • 2021-04-17
  • 阅读734
  • 下载0
  • 8页
  • pdf

全景图中投影模型与算法

全景图技术由于其应用广泛,得到了许多学者的关注,已成为计算机视觉、计算机图形学、虚拟现实等领域的研究热点。本文从全景图的关键技术之一的投影算法出发,介绍了平面变换算法中核心变换矩阵及适用的场景、原则,详细分析各种空面变换算法,主要针对柱形全录技术中的投影算法及其改进算法、球形全景技术中的常规算法、分块对应算法及全向图转换算法和立方体全聚技术中的位统1法、二样改理算法及立体投影算法进行了深入的探讨,对全景图技术中投影算法的发展趋势作工展望人

  • 2021-04-17
  • 阅读705
  • 下载0
  • 8页
  • pdf

目标规划的模型与算法

现代的经济问题往往提出一一连串的目标,这些目标既有先后之分,又有缓急之别,而且可能是相互排斥、相互矛盾或有从属关系。决策者处理含有多个目标的问题时需要有一种方法。1961年A.charnes和w .w ,Cooper开始引入了一种处理多目标决策问题的数学方法●1965年Ijiri, 1968年Contine又对 目标规划的发展做出了贡献。近年来随着电子计算机的日趋完善,计算量大大简化,目标规划也日益为人们所重视,并已应用于生产管理、市场管理、财政计划、学术计划和医院管理等部门,还编制出了计算机程序,月标规划已发展成为一种成熟的管理科学的手段。

  • 2021-04-17
  • 阅读693
  • 下载0
  • 8页
  • pdf

深度学习基础-经典卷积神经网络

卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。经典的神经网络结构,分别是LeNet-5、AlexNet和VGGNet。本问对经典卷积神经网络进行讲解。

  • 2021-02-13
  • 阅读1454
  • 下载1
  • 8页
  • pdf

区块链技术在农产品溯源领域的应用研究

区块链技术在农产品溯源领域的应用研究成果

  • 2021-12-22
  • 阅读1233
  • 下载0
  • 7页
  • pdf

一种深度残差网络构建的5G无线智能传播模型

一种深度残差网络构建的5G无线智能传播模型

  • 2021-06-28
  • 阅读1296
  • 下载0
  • 7页
  • pdf

基于Logistic模型和随机差分变异的正弦余弦算法_徐明

针对标准正弦余弦算法(Sine Cosine Algorithm,SCA)处理全局优化问题时存在收敛速度慢、易陷入局部最优和求解精度低的缺点,文中提出了一种基于非线性转换参数和随机差分变异策略的改进正弦余弦算法(LS-SCA)。首先,设计一种基于Logistic模型的非线性转换参数策略以平衡算法的全局搜索和局部开发能力;其次,引入随机差分变异策略以增强种群的多样性与避免算法陷入局部最优;最后,将非线性转换参数和随机差分变异策略进行融合。一方面,选取12个标准测试函数进行全局寻优的仿真实验。结果表明,与其他SCA类算法和最新智能算法相比,LS-SCA在收敛精度和收敛速度指标上均能达到较优的效果。其中,随机差分变异策略对LS-SCA全局寻优能力的提升尤为明显。另一方面,利用LS-SCA优化神经网络参数解决了两类经典分类问题。实验结果表明,与传统的BP算法和其他智能算法相比,基于LS-SCA的神经网络能达到较高的分类准确率。

  • 2021-06-17
  • 阅读1271
  • 下载0
  • 7页
  • pdf

基于神经网络语言模型的动态层序Softmax训练算法_杨鹤标

针对词向量训练过程中层序Softmax算法无法进行增量训练及海量数据训练低效的问题,提出了动态层序Softmax算法.通过对数据样本的增量加载,采用结点置换方法动态构建编码树,实现对样本的增量训练.为避免损失函数因样本量较少而呈现震荡式下降,利用梯度的一阶矩估计与二阶矩估计动态调整参数更新方向与学习率,通过梯度迭代缩小权值变化范围和收敛训练误差,提高词向量的训练效率.以维基百科中文语料作为数据进行了试验,完成了训练效率和质量的分析.结果表明:相较于现有方法动态层序Softmax算法显著提高了训练效率,当增量样本大小为10 kB~1 MB时,训练增速有近30倍的提升,有效地缩短训练周期.

  • 2021-06-17
  • 阅读1265
  • 下载0
  • 7页
  • pdf
上一页 1 …… 3233343536373839404142 …… 81 下一页 共 643 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

国内重点工业物联网平台四类厂商分类及选型指南

国内重点工业物联网平台四类厂商分类及选型指南

  • 阅读179
  • 下载6

工业物联网平台的典型应用场景深度分析

工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。

  • 阅读231
  • 下载8

低空基础设施发展研究报告(2025)

当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。

  • 阅读390
  • 下载1

华为数字化转型之道

首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,

  • 阅读463
  • 下载4

最新上线

全球数字治理蓝皮书(2025)

全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)

  • 阅读33
  • 下载0

人工智能赋能应用实践指南

当前,人类正处在新一轮科技革命和产业变革的历史关口,人工智能正以前所未有的速度重塑世界,为千行万业注入新动能。从工业制造的智能产线到农业生产的精准种植,从金融服务的智能风控到医疗健康的远程诊断,人工智能推动着生产效率的跃升与产业形态的迭代。正如《指南》所展望的那样,未来,随着网络通信、前沿算法、存储算力等多元技术的深度融合,以及海量数据与前沿知识的双重加持,人工智能将彻底突破单一技术工具的局限,蜕变为贯穿千行万业生产链条的关键枢纽,融入千家万户的日常起居,成为人类社会高效运转不可或缺的底层支撑。

  • 阅读29
  • 下载0

新能源场站无人值班建设方案

新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案

  • 阅读38
  • 下载1

零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线

零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线

  • 阅读39
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南