年初复工,如何开好局、起好步对于安全生产工作尤为关键、尤其重要。知己知彼,百战不怠,这份复工复产安全攻略:一案、两签、三试、四收、五查、六关、七重、八一、九时、十招!请您收好~
上个月 sourcegraph 放出了 conc[1] 并发库,目标是 better structured concurrency for go, 简单的评价一下。每个公司都有类似的轮子,与以往的库比起来,多了泛型,代码写起来更优雅,不需要 interface, 不需要运行时 assert, 性能肯定更好我们在写通用库和框架的时候,都有一个原则,并发控制与业务逻辑分离,背离这个原则肯定做不出通用库。
无论人们是工业自动化的新手,还是具有几十年的经验的资深员工,都有大量的信息需要筛选,这使得识别最具影响力的趋势成为一个真正的挑战。
高斯噪声是深度学习中用于为输入数据或权重添加随机性的一种技术。 它是一种通过将均值为零且标准差 (σ) 正态分布的随机值添加到输入数据中而生成的随机噪声。 向数据中添加噪声的目的是使模型对输入中的小变化更健壮,并且能够更好地处理看不见的数据。 高斯噪声可用于广泛的应用,例如图像分类、对象检测、语音识别、生成模型和稳健优化。
对时间序列进行分类是应用机器和深度学习模型的常见任务之一。本篇文章将涵盖 8 种类型的时间序列分类方法。这包括从简单的基于距离或间隔的方法到使用深度神经网络的方法。这篇文章旨在作为所有时间序列分类算法的参考文章。
自然界中的流体方程十分复杂,它们都起源于欧拉方程。为了找到这个方程在特定情况下失效的情况,数学家不得不用上了计算机。有人却觉得他们的证明不够“优雅”。
自监督学习能在各种任务中学习到分层特征,并以现实生活中可使用的海量数据作为资源,因此是走向更通用人工智能的一种途径,也是深度学习三巨头之一、图灵奖得主 Yann LeCun 一直推崇的研究方向。
微积术的发现是人类文化史上一件划时代的大事。假使没有微积,我们不能想象近代的科成何景象。现在我们学习微积,一个中材的人,便可于短期内明了其原理。然而在发现的时候,即使极大的天才,亦须苦心孤诣,暗中摸索,才能获得门径。在我们已经利用了微积方法二百余年后的今日,追溯既往,考察一下它的发现的经过,便知前贤缔造的艰难,远非想像所及。 微积术的发现者,一般公认为牛顿(1642-1727)与莱布尼兹(1646-1716)二人。但照意大利数学史家Castelnuovo的研究[指Guido Castelnuovo的Le origini del calcolo infinitesimale nell'era moderna——小编注],微积术的发展,从希腊时代一直到近代,是一个绵续的整体,牛顿与莱布尼兹二氏不过在其中走了最重要的一步。这话并没有估低了他们的功绩。在他们以前,所有的微积观念,是零星的。有了他们的工作,微积术才成为一个系统,才能应用到天文、物理、和一切其他科学。
没有账户,需要注册
国内重点工业物联网平台四类厂商分类及选型指南
工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
算力互联网的发展和演进是一个持续不断的过程,编制组将密切关注国内外算力互联网的发展动态,积极听取产业界的意见与建议,不断完善和优化算力互联网体系架构的研究内容,适时修订并发布报告的新版本,以更好地推动算力互联网发展。
为更好地推动数据智能服务产业发展,本报告从数据智能服务产业定义、要素、载体、产业链、创新模式等方面开展研究工作。第一部分数据智能服务产业概念界定、内涵特征以及全球趋势;第二部分分析数据智能服务产业的核心关键要素;第三部分阐述数据智能服务产业链结构以及产业生态图谱;第四部分阐述数据智能服务的产业载体,第五部分总结了数据智能服务产业的创新模式,最后根据上述研究,从技术、应用、产业、安全等四个方面分析趋势,为我国数据智能服务产业发展提供参考。
通过深度学习嵌入算法可以对离散序列数据一自然语言文本进行计算分析。 主要应用方向是文本信息抽取,包括文本分类、关键实体识别、实体之间关系识别以及事件识别。
利用人与大数据技术,结合专业的中医疾病、证候/治则知识库、疾病知识图谱等,研发了医用智能处方椎荐系统。它能够无缝植入到医院现有的HIS和医生工作中,不改变医生工作流程,输入患者信息、证候、主诉等信息智能推荐方剂和备用饮片药,医生进行加减化裁即可成方,节省医生诊疗时间,提高工作效率。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南