基于软件定义网络(SDN)的工业物联网(IIoT)网络具有一个集中式控制器,它是未经授权用户攻击的单一有吸引力的目标。IIoT网络中的网络安全正成为最重大的挑战,尤其是来自日益复杂的分布式拒绝服务(DDoS)攻击。这种情况需要有效的方法来缓解最近的攻击,因为现有技术更侧重于DDoS检测。大多数现有的DDoS检测功能在计算上都很复杂,并且不再具有足够的效率来抵御DDoS攻击。因此,需要一种低成本的DDoS攻击分类方法。本研究提出了一种有效的特征选择方法——极限梯度提升(XGBoost),用于确定最相关的数据特征,该方法使用卷积神经网络和长短期记忆(CNN-LSTM)进行DDoS攻击分类。所提出的模型评估了CICDDoS2019数据集,该数据集具有改进的准确性和低复杂度能力,可满足低延迟IIoT需求。性能结果表明,该模型的精度高达99.50%,时间开销为0.179ms。
本文提出了一种基于TrCNN的多尺度域自适应方法,用于数据稀缺情况下的故障诊断。源域诊断模型采用Trans-former和CNN序列结构,在全局和局部捕获原始数据的互补诊断信息,有助于域自适应,同时提高源域故障诊断的准确性。我们提出了一种多尺度分布对齐框架MTCDAN,通过学习包含更多信息的多个域不变表示来补偿单结构分布对齐方法中的信息损失。通过TE过程和TFF实例验证了该方法的有效性和优越性。然而,由于仅考虑两个域标签空间相同的情况,本文提出的方法仍然受到限制。在我们未来的工作中,我们将进一步研究目标域中发生未知故障时的分布对齐策略,其中如何识别未知故障将是我们工作的重点。
洗面奶为弱酸性或中性红色乳液,多采用软管包装,是一种专门用来洗脸或卸妆的皮肤清洁剂。洗面奶具有良好的流动性、延展性和渗透性。采用洗面奶洗脸可以彻底去除脸部的汗渍、灰尘、油
本文从皂基型洁面膏的配方结构、制作工艺两方面阐述了皂基型洁面膏中各种组分对皂基体系的作用,以及生产工艺对产品的影响,对化妆品工程师进行皂基型洁面膏产品的配方设计和生产实践具有一定的指导意义和参考价值。
皂基产品在国内出现已经很多年了,但是国内的化妆品企业对此类产品的研究仍不够深入,皂基产品做的比较好如六神及樱雪等沐浴露等。而皂基的洁面膏制造工艺复杂,尤其是冷却过程,需要专门的大型设备,小型工厂根本没有能力生产出柔滑细腻的皂基洁面乳。所以目前市面上出售的大都是欧莱雅之类的大公司产品,国内的化妆品企业对此类产品的研究似乎仍然处于起步阶段,根据目前在世面上能够见到的国内企业所生产的洁面膏产品的分析,大多数企业所生产的洁面膏产品都没有能够达到国外同类产品的性能指标。
本文提出了一种用于复杂设备关键部件RUL的T2张量辅助多尺度Transformer,以捕捉多尺度时间模式。我们新颖地提出了时间数据和T2张量的张量化表示,并开发了一种高阶Transformer来提取T2张量的多尺度时间特征。针对该模型,提出了一种具有TRdecom位置的轻量级方法。他们提出的模型在准确性和效率方面具有卓越的能力。然而,我们提出的方法只是初步尝试,未来我们需要进一步研究数据处理,并将这种方法与分布式张量计算和云边缘协作等技术相结合,以提高模型的性能。
在本研究中,提出了一种新的基于KSLD TNet的轻量级深度学习模型,该模型可以有效地简化特征提取,增强对数据集中关键样本信息的提取。通过对关键样本的定位和提取,设计了一种基于传统Transformer网络的创新预测框架,从图书搜索的角度提高了工业过程的多步预测精度。两个真实的工业数据集证明了所提出的预测框架的优越性能。与最先进的方法相比,所提出的方法在多步预测精度和模型计算效率方面具有优势。由于该方法的样本简化机制可以减少模型计算量,因此更适合于工业大数据环境。在未来的研究中,我们将考虑如何使用本地化的关键样本进行扩充,以在小样本数据的背景下提高模型性能。
针对轴承全寿命周期数据获取困难、训练样本少的问题,提出一种基于关系网络的轴承剩余使用寿命 (Remaining useful life,RUL) 预测方法。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。
市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。
XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。
区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南