在机器学习篇章中,我们简单介绍了卷积核,今天,我们借助知乎的一篇文章,梳理一下对卷积核一些基本情况。
在时变转速条件下,轴承振动信号表现出很强的非平稳性。此外,微弱的轴承故障特征往往淹没在强背景噪声中。如何从非平稳振动信号中准确提取未知故障特征是轴承故障诊断的首要问题。
齿轮系统状态监测的主要目的是,在故障发生之前,通过检测部件(例如轮齿)的劣化,促进基于状态的维修(CBM),故障可能导致整个齿轮系统故障,并降低系统可用性。振动监测的作用是检测与结构完整性或振动状态变化相关的任何振动
本文描述了一种利用驱动齿轮箱的感应电机测得的相位电流来识别局部轮齿缺陷(如点蚀)的方法。基于多尺度熵(MSE)算法SampEn的一种新的异常检测工具,它允许在多个时间尺度上识别信号中的相关性。电机电流特征分析(MCSA)结合主成分分析(PCA),并将观察值与使用名义健康数据建立的模型预测值进行比较。仿真结果表明,该方法能够检测电流信号中的齿轮点蚀。
深度学习的必要性:智能制造背景下,机械设备趋于复杂庞大,海量、多源、高维度、非结构的工业数据给系统管理监测带来更大难度,设备的故障诊断与预测更显重要。传统故障诊断与预测方法难以建立准确的数据模型,在设备故障诊断预测应用方面受到很大局限,深度学习以其强大的自主学习非线性数据表示和模式识别的能力在许多领域都有重大突破,在工业设备的故障诊断与预测领域也得到广泛关注。
轴承广泛应用于经济的各个领域。在国民经济中,他们主要涉及农业、采矿业、制造业、电力、热力、水生产和建筑业、交通运输、邮政服务等许多行业。它们用于汽车、农业机械、工业生产(加工工具)、矿山钻机、制造业纺织机械、建筑业起重机、各种传动装置等。轴承行业作为机械工业的基础和支柱,其发展水平往往代表或制约着一个国家机械工业及其他相关产业的发展水平。
1、正常状态频谱显示1X和2X转速频率和齿轮啮合频率GMF。 2、齿轮啮合频率GMF通常伴有旋转转速频率边带。 3、所有的振动尖峰的幅值都较低,没有自振频率。
本文整理了十五种常见的振动故障及其特征频谱: 不平衡,不对中,偏心转子,弯曲轴,机械松动,转子摩擦,共振,皮带和皮带轮,流体动力激振,拍振,偏心转子,电机,齿轮故障,滚动轴承,滑动轴承。
没有账户,需要注册
包括集团管控系统、工厂系统、开发发布系统、运维管理系统、网关系统5大子系统,旨在实现集团内部多工厂、多部门之间的协同管理和数据共享。通过构建一体化的工业物联网平台,整合各工厂的生产、设备数据和资源,打造集团统一的工业操作系统底座,为集团提供统一的管理视角和决策依据,提升集团整体运营效率和协同效应
清华之后,北大也不甘示弱,推出了DeepSeek教程。清华的教程是传媒学院出的,而北大的这份文件是人工智能学院和计算机学院出的,所以总体上内容更加专业、全面和深入,尤其还提到了AI时代工作和技能需求的变化,可以说是不可多得的优质资料。
成都市作为中国国家中心城市,秉承“创新、协调、绿色、开放、 共享”理念,运用 CIM 平台+免接口数据集成技术,打造城市大脑, 推行网络理政。通过接入市、区(市)县两级部门信息系统,融合政 府、企业和社会数据,以网络理政为城市大脑中枢,构建能在线监测、 能分析预测、能应急指挥的智能城市治理运行体系,提升城市治理能 力。
本书在实践积累与行业洞察基础上,试图对一系列关键问题做出解答:工业大模型与通用大模型有何不同?工业大模型的技术体系与关键技术何在?工业大模型赋能的重点领域和主要场景包括哪些?我国和全球工业大模型的产业生态如何?
我国数字经济规模持续扩大,56、人工智能、云计算等技术的广泛应用加速了传统产业数字化转型进程。数据作为核心生产要素的流通与共享已成为经济增长的关键驱动力,国家数据局的成立也加速了这一进程,然而,数据的大规模流动也带来了泄露、滥用等安全风险,使得数据安全成为保障数字经济健康发展的核心议题。
中国社科院工业经济所研究员朱彤作了题为“我国能源转型与能源体制改革的能源监管问题”的报告。中国社科院工业经济所研究员朱彤作了题为“我国能源转型与能源体制改革的能源监管问题”的报告。
针对负荷趋势性、周期性和日历特征的影响,本文提出一种考虑动态时间锚点和典型特征约束的年日均负荷曲线预测方法。根据实际算例结果得出以下结论。
基于调度系统导出的CIM/XML和CIM/E文档,本文从交直流状态估计数据生成的角度,对含有LCC、MMC的交直流混联系统进行统一迭代法状态估计建模,针对直流系统在网络中的比重逐步增加的发展趋势,对某地区交直流混联子系统进行状态估计和不良数据检测与辨识,
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南