随着人工智能技术和配套数据系统的快速发展,化工过程建模技术达到了新的高度,将多个机理模型和数据驱动模型以合理的结构加以组合的智能混合建模方法,可以综合利用化工过程的第一性原理及过程数据,结合人工智能算法以串联、并联或者混联的形式解决化工过程中的模拟、监测、优化和预测等问题,建模目的明确,过程灵活,形成的混合模型有着更好的整体性能,是近年来过程建模技术的重要发展趋势。
对于钢铁制造业、煤矿行业及建筑行业等高危行业来说,施工过程中佩戴安全帽是避免受伤的有效途径之一。针对目前安全帽佩戴检测模型在复杂环境下对小目标和密集目标存在误检和漏检等问题,提出一种改进YOLOv5的目标检测方法来对安全帽的佩戴进行检测。
目的 在施工现场,安全帽是最为常见和实用的个人防护用具,能够有效防止和减轻意外带来的头部伤害。 但在施工现场的安全帽佩戴检测任务中,经常出现难以检测到小目标,或因为复杂多变的环境因素导致检测准确率降低等情况。
湿地是地球上最重要的生态系统之一,在维持全球生态环境安全等方面发挥着举足轻重的作用。由于湿地独特的水文特征,传统的湿地监测需要耗费大量的人力和财力,对于大尺度的湿地信息提取更是困难重重。
针对现有的对安全帽佩戴检测算法的参数多、网络复杂、计算量大、不利于在嵌入式等设备进行部署,且对遮挡目标辨别度差等问题,提出了一种改进的轻量级的安全帽检测算法YOLO-M3,先将YOLOv5s主干网络替换为MobileNetV3来进行特征提取,降低了网络的参数量和计算量。
数控机床是装备制造业的工作母机,是国家综合国力的象征,其可靠性已成为制约行业发展的瓶颈。数控机床可靠性建模是可靠性工程的基础,主要对数控机床可靠性建模方法和技术的研究进展进行综合评述
地球表面的江河、湖泊和水库等内陆水体是水资源的主要组成部分,由气候变化和人类活动所引起的内陆水体分布和水质时空变化等问题已成为各国科学家和政府关注的热点
为研究 BP 神经网络对 CFRP 约束混凝土抗压强度的预测能力以及神经网络模型的输出性能,在大量的实验数据基础上,建立了 CFRP 约束混凝土抗压强度的 BP 神经网络预测模型,探讨了不同数据组合对神经网络模型预测精度的影响
没有账户,需要注册
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
变压器套管在红外巡检图像中占比较小,发热缺陷特征不明显,人工检测套管发热缺陷易受主观判断影响,且难以应对巡检产生的海量红外图像。为提高套管发热缺陷检测效率,提出了一种结合目标检测算法与图像偏斜矫正的变压器套管发热缺陷检测方法。首先,采用YOLOv7目标检测模型对套管目标进行识别与定位,引入SimAM注意力机制与高效解耦头对模型进行改进,提高套管目标的识别准确率与召回率。然后,对定位裁剪的套管目标进行图像偏斜矫正,提取中心区域温度特征信息进行发热缺陷诊断。实验结果表明:改进后模型对套管目标识别准确率为95.50%,召回率为97.14%,平均精度为98.30%,检测FPS为42帧/s,所提方法能精准定位套管目标并提取对应温度曲线,有效提高了套管发热缺陷检测效率。
应用于智能电网的隧道磁电阻(tunnel magnetoresistance,TMR)电流传感器的灵敏度易受环境温度的影响发生变化,从而严重影响TMR电流传感器的测量精度。从TMR电流传感器基本测量原理出发,对传感器芯片的灵敏度进行了理论分析。在传感器下方增设了周期注入式直流自校准回路,计算注入前后传感器输出电压的差值平均值,实时追踪校准当前环境温度下灵敏度的真实值,并设计闭环运算控制电路对传感器进行实时调整。最后搭建实验测试平台进行了直流注入实验、温控实验和线性度实验,测试结果证明了旁路自校准技术可以提高开环式TMR电流传感器测量的准确性和稳定性。
基于模块化多电平换流器(modular multilevel converter,MMC)的电力电子变压器(power electronic transformer,PET)在非理想工况下易发生故障及扰动,严重影响系统电能质量。针对传统控制方法在非理想工况下存在的动稳态性能差等问题,在MMC-PET整流级提出了基于自适应自抗扰比例积分控制器的连续控制集模型预测控制策略。首先,设计了自适应自抗扰比例积分控制器用于电压外环,解决了电压外环信号跟踪及扰动抑制能力差等问题。其次,电流内环使用连续控制集模型预测控制方法以提高系统的响应速度及稳态性能,引入改进型载波移相调制策略解决桥臂电流畸变问题。最后,在网侧负载突变、网压不平衡、输出级负载投入等非理想工况下对MMC-PET系统进行对比仿真和实验,验证了所提控制策略的优越性。
由于直流微电网广泛采用传统下垂控制,因而在恒功率负荷扰动时,系统存在母线电压变化速度快、振荡、偏移大等问题,不利于电压敏感负荷的正常运行。为解决上述问题提出一种由改进的自适应虚拟电容控制(improved adaptive virtual capacitor control,IAVCC)、振荡抑制器和电压补偿器组成的直流母线电压综合控制策略。其中,IAVCC在负荷扰动时可根据母线电压变化率自适应地调节虚拟电容大小,从而增强直流微电网惯性,减缓母线电压变化速度,改善系统动态特性。在此基础上,振荡抑制器通过滤除母线电压的高频振荡分量,显著地抑制了电压振荡。此外,电压补偿器可实现母线电压无偏差调节,解决了负荷功率增加时母线电压跌落严重的问题。所提出的综合控制策略实现了直流母线电压动态特性优化、振荡抑制以及无偏差调节,改善系统动态性和稳定性。最后通过基于RT-LAB的实验验证所提策略的可行性。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南