本文提出了一种基于VAE-WSVM的二次系统采样回路测试校核评估方法。该方法基于电网二次系统采样回路电流数据,能够解决采样回路各类误差状态小样本问题,利用VAE对小样本进行增殖,生成与正常数据样本量相当的异常数据样本,使整体样本达到数据平衡,更适用于人工智能方法,进一步利用GWO算法改进的SVM分类器,实现对二次系统采样回路的准确评估,模型性能稳定。
Sen变压器通过改变线路两端电压的幅值与相角以实现潮流调控作用,目前有关Sen变压器的本体保护研究匮乏,本文根据其特殊的拓扑结构与电流关系,构建了Sen变压器的本体差动保护方案,并通过仿真分析验证了方案的有效性。主要结论如下。
生产工具周期性创新,今生产方式、组织模式、管理方式和人才特征代际化变革。生产三大根本变量:设施设备集成度-工作岗位杠杆性-资源转化加速率,
三大智能化闭环:智能生产控制、智能运营决策优化、消费需求与生产制造精确对接 三大智能化闭环:智能生产控制、智能运营决策优化、消费需求与生产制造精确对接
2024年,国内AI产品第一轮变革基本完成--高价值场景基本探索完毕,优秀产品在规模和营收方面脱颖而出。AI智能助手等多个赛道形成了明确的竞争格局,数十款AI产品用户规模达到千万量级,搜索、写作、电商图、游戏原画等场景的工作流已被深度A!化...
上篇文章中,给大家分享了一个使用 Dify+RAGFlow 实现的泵类设备的预测性维护案例,过去两天里有很多盆友在后台私信我了一些实现细节,比如:HTTP 请求的数据存在哪里? IoT 平台的数据能否直接实时“流”入 Dify?以及如何使用 MCP 的方案实现四个数据源(IoT, CMMS, MES, ERP)的智能查询。
准确预测电池老化对于缓解电池使用过程中的性能下降至关重要。虽然汽车行业认识到利用现场数据进行电池性能评估和优化的重要性,但其实际实施面临着数据收集方面的挑战,并且缺乏基于现场数据的预测方法。为了解决这个问题,我们从 60 辆运行了 4 年以上的电动汽车中收集现场数据,并开发了一种基于统计特征的稳健数据驱动方法,用于锂离子电池老化预测。所提出的预处理方法集成了数据清洗、转换和重建。此外,我们还引入了多级筛选技术,以从历史使用行为中提取统计特征。利用机器学习,我们准确预测老化轨迹和最差寿命的电池,同时量化预测不确定性。本研究强调基于现场数据的电池健康管理框架,这不仅为船上健康监测和预测提供了重要基础,也为电池第二寿命评估场景铺平了道路。
在轴承故障信号中既包含轴承转动声音,又包含场景中的其他噪声信息。如何聚焦轴承转动的时域特征和频域特征,降低场景噪声的干扰,是我们需要解决的问题。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。
市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。
XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。
区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南