• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

覃日升教高:自适应VMD与新型K-M互卷积窗的非稳态谐波参数检测方法编辑部

针对非稳态谐波参数难以准确检测的问题,通过模态分量的能量贡献率改进变分模态分解,自适应分解谐波信号提取模态分量,以Kaiser窗与最大旁瓣衰减窗(maximum side-lobe decay window)构建新型K-M互卷积窗,推导基于K-M互卷积窗的双谱线非稳态谐波参数校正公式,据此提出基于自适应变分模态分解(variational modal decomposition, VMD)与新型K-M互卷积窗的非稳态谐波参数检测方法,开发基于数字信号处理器(digital signal processer, DSP)的非稳态谐波参数分析实验平台。仿真分析与实测结果表明,所提方法能有效在噪声、基频波动干扰下准确检测非稳态谐波参数,跟传统谐波分析方法对比,所提方法可适用于非稳态谐波分析、谐波检测精度高。

  • 2024-10-11
  • 阅读518

周游副教授:基于气泡产生起始温度的变压器短期过载预警方法

变压器过载运行容易导致油纸绝缘系统产生气泡进而造成故障,但目前只以140 ℃作为热点温度限值,未能考虑实际运行状态对气泡起始温度的影响,难以充分发挥设备的最大利用效益。针对上述问题,综合国内外油纸绝缘气泡产生起始温度的试验提出了适用于实际工况下的变压器气泡产生起始预警温度计算方法。根据变压器的运行年限、油中水分含量和海拔等运行参数估算出变压器内部油纸绝缘系统产生气泡的起始温度。以该温度的90%作为预警温度,表征变压器能够承受的最大荷载能力。利用贝叶斯网络建立了短期负荷预测模型,结合绕组热点温度计算方法实现了变压器热点温度的短期预测。提出了一种变压器短期过载预警方法,并证实了该方法能够充分考虑变压器的运行实况,对未来的过载情况提前发出告警,指导相关运维部门开展变压器的过载停运和负荷转移工作,减少变压器停运和绝缘故障的发生。

  • 2024-10-11
  • 阅读322

张莲教授:基于混合特征选择和INGO-DHKELM的变压器故障诊断方法

针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit learning machine,DHKELM)实现变压器故障诊断。首先,基于相关比值法构建24维变压器故障特征集,从线性相关和非线性相关的角度出发,采用Pearson相关系数和互信息法,筛除相关性较低的特征。其次,引入Logistic混沌映射、随机反向学习和自适应t分布变异改进NGO算法,提升其寻优性能。然后,利用INGO算法对保留特征进行二次筛选,获得最优输入特征。最后,将极限学习机自动编码器引入混合核极限学习机中,建立DHKELM诊断模型,利用INGO对DHKELM模型初始参数进行优化,完成INGO-DHKELM变压器故障诊断模型的构建。实验表明,与常规特征选择方法相比,利用混合式故障特征选择方法所选择的输入特征进行故障诊断能够有效提升诊断准确率;相较于其他优化型诊断模型,INGO-DHKELM具有更高的准确率和更好的稳定性。

  • 2024-10-11
  • 阅读305

数据中心优化整合建设方案

作为核心业务系统(数据库和业务软件系统),需要提供业务集中处理和交换需要保证业务系统的高可靠性,提供7*24的可持续性服务,主机设备具有极强的承载能力,满足现有及未来几年的应用需求,保证业务处理高处理性能

  • 2024-10-11
  • 阅读131

智慧教育信息化建设规划方案

针对教育信息化的发展现状和国家与地方政府对教育信息化发展的要求,着眼于实现教育价值和民生价值,我们的定位是:结合教育信息化现状和教育发展的薄弱环节和短板,打造融合线下实体和线上虚拟教育教学环境一体化的教育教学环境,利用教育信息化手段解决一些存在的主要问题,

  • 2024-10-11
  • 阅读182

【IEEETII】基于VMD和LSTM的电网安全负荷预测混合模型

电力负荷预测作为电网静态安全的基础,直接影响电网运行的安全性、电网规划的合理性和供需平衡的经济性。然而,各种因素导致短期电力消耗发生剧烈变化,使数据更加复杂,因此更难预测。针对这一问题,本文提出了一种基于变分模分解和长短期记忆的新的混合模型,该模型消除了季节因素并进行了误差校正。对新加坡和美国的四个真实负载数据集进行了全面的案例研究,以证明所提出的混合模型的有效性和实用性。实验结果表明,所提出的模型的预测精度明显高于对比模型。关键词:误差修正、电网安全季节性因素消除、短期负荷预测(STLF)。

  • 2024-10-09
  • 阅读255

智慧交通顶层设计方案

打造国际知名绿色、低碳、高效城区。 要求提高交通系统运行效率、减少交通事故、降低环境污染。 全面建设智慧城市、提升道路交通管理效率、实现某区绿色交通不同层面逐步实现交通信息服务体现为民服务的思想,提升市民生活质量。

  • 2024-10-09
  • 阅读155

智能制造是强国必由之路

运用所拥有的知识,对感知到的环境变化进行逻辑推理和判断,识别出对系统运行带来的影响,以决定是否需要采取必要行动。例如:智能汽车识别红灯就停车,识别绿灯就启动。

  • 2024-10-09
  • 阅读153
上一页 1 …… 1595915960159611596215963159641596515966159671596815969 …… 16461 下一页 共 131687 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读127
  • 下载2

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读109
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读118
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读166
  • 下载5

最新上线

人工智能赋能教育高质量发展

从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。

  • 阅读31
  • 下载1

2025年度低空经济投资策略

市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。

  • 阅读36
  • 下载0

数字档案馆标准建设方案

XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。

  • 阅读49
  • 下载0

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读88
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南