大数据平台整体安全建设,从数据采集到数据资产的梳理,再到平台的访问安全管控和数据存储安全,以及数据共享分发过程中的版权保护,整个安全方案如何形成数据访问和使用过程的闭环,并且能够实现安全策略的统一下发和协同配合,是摆在平台建设方面前的棘手问题,本文以某大数据平台安全建设方案为参考,抛砖引玉,共同探讨行之有效的安全建设思路,该方案已经初步得到建设方认可,具备可落地基础。
如何将海量数据应用于决策、制造、营销和产品创新研发?如何利用大数据优化产品、流程和服务?如何利用大数据更科学的制定企业战略、实现科学决策?一切都离不开大数据治理,特别在数字经济中,数据治理比以往任何时候都显得尤为重要。”
通过互联网的漏洞进行牟利已经成为一种趋势 困扰互联网企业的典型业务安全问题 挑战一 – 黑产产业链化 挑战二 – 黑产组织专业化 挑战三 – 新型手段层出不穷,隐蔽性增强 依赖大数据应对挑战 应对方式1 – 依赖数据打造风险控制产品闭环 应对方式3 – 联防联控、行业联盟
“它”是个什么东西? - 一个能够协助我们进行应用指纹提取、通 用漏洞挖掘、日常辅助使用等等····· 我要创造它 从设计框架到数据爬取,从爬取到可视化分析。 一步一步往前走。 后续·可持续发展 网络那么大,我想去看一看。
狭义数据安全与广义数据安全 再谈数据泄漏 数据流通的多个环节 数据共享与脱敏 006年,美国最大的影视公司之一 Netflix,举 办了一个预测算法的比赛(Netflix Prize),比 赛要求在公开数据上推测用户的电影评分 。 Netflix 把数据中唯一识别用户的信息抹去,认 为这样就能>保证用户的隐私。但是在 2007 年 来自The University of Texas at Austin 的两位 研究人员表示通过关联 Netflix 公开的数据和 IMDb(互联网电影数据库)网站上公开的纪录 就能够识别出匿名后用户的身份。三年后,在 2010年,Netflix 最后因为隐私原因宣布停止这 项比赛,并因此受到高额罚款,赔偿金额总计九 百万美元。
安全数据分析 大数据安全分析 从数据行为和关系中检测风险,并能产生举 一反三的学习能力,无需人工干预并持续完 善检测能力。
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 [1] 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据通常定义为一个企业或组织对其所创造的海量结构化、半结构化与非结构化数据的存储和分析,其目的在于从复杂的数据中找到其关联、规律,并加以利用。大数据正以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。
2025 年,人工智能正式迈入 “智能体元年”,AI Agent?成为驱动产业变革的核心力量,硬件迭代、多模态融合、世界模型演进共同推动行业从 “被动响应” 向 “主动解决复杂问题” 跨越。
机器学习与深度学习有着明显的异同点 在数据准备和预处理方面,两者是很相似的。他们都可能对数据进行一些操作:数据清洗、数据标签、归一化、去噪、降维。核心区别:传统机器学习的特征提取主要依赖人工,针对特定简单任务的时候人工提取特征会简单有效,但是并不能通用;深度学习的特征提取并不依靠人工,而是机器自动提取的。这也是为什么都说深度学习的可解释性很差,因为有时候深度学习虽然能有好的表现,但是我们并不知道他的原理是什么。
2025年是中国人工智能规划中期规划的关键节点,AI场景解决方案从“能用”到“有用”到“好用”在垂2025年中国AI产品在用户规模与产品数量上已具备全球竞争力
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南