1969 年图灵奖得主、MIT 人工智能实验室创始人马文·明斯基(Marvin Minsky)在其1986年著作《心智社会》(The Society of Mind)一书中曾探讨人类智慧的来源。他认为,“人类的智慧源于人类社会的多样性,而不是某个单一的、完美的准则。”
人们常常以为这是马克?吐温(Mark Twain)的名言,然而他从来没有这么说过。实际上,这是杂文家乔纳森?斯威夫特(Jonathan Swift)曾经写过的一篇文章的变体。 这个误会就和一些大行其道的阴谋论一样,由无关的事实和虚假的信息组成,以某种方式连接到一个松散的叙述中迅速传播,被人们当做所谓的 “真相”。
器学习与科学计算的结合, 即数据和机理的融合计算, 为科学研究提供了新的手段和范式, 成为了前沿计算的典型代表。从机理出发的建模以基本物理规律为出发点进行演绎,追求简洁与美的表达;从数据出发的建模从数据中总结规律,追求在实践中的应用效果。这两方面的建模方法都在科学史中发挥了重要作用。
制定“互联网+”行动计划,推动移动互联网、云计算、大数据、物联网等与现代制造业结合。 一-2015年3月5日 《政府工作报告》 推进“互联网+',是中国经济转型的重大契机。传统产业有自己的优势,要推动传统行业与‘互联网+'结合,释放更大活力。
企业信息化建设三驾马车:ERP、PDM与MES,ERP管理的是企业的资源,比如人员、设备折旧等,PDM管理的是产品的设计过程,比如产品图纸、工艺等,MES管理的是制造的过程,比如生产计划、生产作业等。ERP是从客户开始,到订单,到主计划,回答的是为什么生产;PDM从产品需求开始到工艺编写,回答的是怎么生产,MES是从计划到具体加工,回答的是到底是怎么干的。
在最近的几年中,人工智能随着神经网络的突破,得到了巨大的发展,特别在图像、分析、推荐等领域。在人工智能快速发展的同时,计算规模不断扩大、专家系统过于单一、神经网络模型的灵活性、应用领域的复杂行等问题,也在不断升级。在这样的环境下,分布式人工智能的发展被研究机构和大型企业提上日程。分布式人工智能,可以解决集中化人工智能的几个主要问题:? 规模化的计算问题。? 计算模型的拆分训练。? 多智能专家系统的协作。? 多智能体博弈和训练演化,解决数据集不足的问题。? 群体智能决策和智能系统决策树的组织,适应复杂的应用场景,比如工业、生物、航天等领域。? 适应物联网和小型智能设备,联合更多的计算设备和单元。
计算机视觉应用深度学习堪称突破的成功点是 2012 年 ImageNet 比赛,采用的模型是 CNN,而不是 Hinton 搞的RBM 和 DBN 之类,就是 Hinton 学生做出来以他命名的 AlexNet。图像数据的特征设计,即特征描述,一直是计算机视觉头痛的问题,在深度学习突破之前10多年,最成功的图像特征设计 (hand crafted feature)是SIFT,还有著名的Bag of visual words,一种VQ方法。
到目前为止,我们使用的大多数技术都要求我们通过其特征手动分割图像。但是我们实际上可以使用无监督的聚类算法为我们完成此任务。在本文中,我们将讨论如何做到这一点。
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南