幸福、热闹的春节假期即将结束,很多员工将返回工作岗位。各有关企业将迎来复工复产高峰,为预防和遏制生产安全事故的发生,各生产经营单位须重视复工复产安全生产工作。
(1)定点。即确定设备点检的部位、项目。 (2)明确点检方法。即完成一个点检项目的手段,例如目视、电流表测量、温度计测量等。 (3)制定点检基准。点检基准是指一个点检项目测量值的允许范围,它是判定一个点检项目是否符合要求的依据。判定基准不是很清楚时,可以咨询设备制造商或根据技术人员(专家)的经验值进行假定,以后逐渐提高管理精度。 (4)设定点检周期。即一个点检项目两次点检作业之间的时间间隔。 (5)确定点检项目由何人实施。
年初复工,如何开好局、起好步对于安全生产工作尤为关键、尤其重要。知己知彼,百战不怠,这份复工复产安全攻略:一案、两签、三试、四收、五查、六关、七重、八一、九时、十招!请您收好~
上个月 sourcegraph 放出了 conc[1] 并发库,目标是 better structured concurrency for go, 简单的评价一下。每个公司都有类似的轮子,与以往的库比起来,多了泛型,代码写起来更优雅,不需要 interface, 不需要运行时 assert, 性能肯定更好我们在写通用库和框架的时候,都有一个原则,并发控制与业务逻辑分离,背离这个原则肯定做不出通用库。
无论人们是工业自动化的新手,还是具有几十年的经验的资深员工,都有大量的信息需要筛选,这使得识别最具影响力的趋势成为一个真正的挑战。
高斯噪声是深度学习中用于为输入数据或权重添加随机性的一种技术。 它是一种通过将均值为零且标准差 (σ) 正态分布的随机值添加到输入数据中而生成的随机噪声。 向数据中添加噪声的目的是使模型对输入中的小变化更健壮,并且能够更好地处理看不见的数据。 高斯噪声可用于广泛的应用,例如图像分类、对象检测、语音识别、生成模型和稳健优化。
对时间序列进行分类是应用机器和深度学习模型的常见任务之一。本篇文章将涵盖 8 种类型的时间序列分类方法。这包括从简单的基于距离或间隔的方法到使用深度神经网络的方法。这篇文章旨在作为所有时间序列分类算法的参考文章。
自然界中的流体方程十分复杂,它们都起源于欧拉方程。为了找到这个方程在特定情况下失效的情况,数学家不得不用上了计算机。有人却觉得他们的证明不够“优雅”。
没有账户,需要注册
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
针对现有基于深度学习的潮流计算方法均基于回归模型,不具有潮流判敛功能对输入的潮流不收敛样本仍映射出虚假系统潮流分布问题,提出一种适用于潮流分析的多任务学习模型,同时具备潮流判敛及潮流分布计算功能。
本文提出了一种基于气吹灭弧原理的一体化防雷灭弧间隙,并且基于磁流体动力学原理 (MHD)对间隙电弧进行仿真分析,利用有限元仿真分析软件搭建了该一体化防雷灭弧间隙模型,分析了间隙电弧熄灭的能量消损过程。
数字孪生城市是在数字空间对物理城市进行复刻、精准映射、实时交互的数字城市,通过数字建模、感知连接、智能分析等技术,洞察物理城市运行状态,仿真推演运行趋势,形成智能交互决策,反馈于物理城市,实现对物理城市的持续优化和迭代升级。自 2017 年“数字孪生城市”建设理念被首次提出以来,在国家部委政策驱动下,数字孪生城市相关技术逐渐成熟,全国多地加快数字孪生应用场景创新实践,在文旅、城市治理和网络等热点领域形成大量优秀案例,市场规模持续增长,应用效能不断增强。
设备点检SOP培训PPT课件
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南