【AI】Ollama+DeepSeek+AnythingLLM打造私有知识库
如何给本地部署的 DeepSeek-R1 投喂数据
【AI】DeepSeek+Dify构建知识库、Agent(智能体)、工作流、聊天助手
提到企业的设备关键指标,很多人就会想到MTBF和MTTR,我们来聊一聊MTBF和MTTR是什么,在设备管理工作中又是如何应用的。
一句话:大模型界的拼夕夕,模型本身确实也有创新点,比如MLA、纯RL预训练、FP8混合精度,但更重要的是让我们看到了开源对闭源的生态挑战、中国对美国主导的有效追赶、极致工程优化的显著受益。
DeepSeek-R1的发布在AI发展进程中具有里程碑式的意义,尤其对机器学习研发社区而言意义重大,主要原因有二:开源策略:提供了经过轻量化处理的蒸馏版本技术透明:公开分享了如何构建类似OpenAI O1这样对的推理模型的完整训练方法
自GPT采用Transformer架构取得成功以来,经典Transformer架构一直是很多大模型的标配。但这不意味着Transformer是完美无缺的。DeepSeek在Transformer架构的基础上也做了很多创新,主要为:多头潜在注意力即MLA 。
马斯克发布了史上最强Grok3大模型:Grok3和DeepSeek谁更强?
没有账户,需要注册
集团版专为集团型企业打造,包括集团管控系统、工厂系统、开发发布系统、运维管理系统、网关系统5大子系统,旨在实现集团内部多工厂、多部门之间的协同管理和数据共享。它通过构建一体化的工业物联网平台,整合各工厂的生产、设备数据和资源,打造集团统一的工业操作系统底座,为集团提供统一的管理视角和决策依据,提升集团整体运营效率和协同效应。
本文深入探讨工业物联网平台,阐述其架构、核心功能以及在各工业领域的应用实例,以及该领域的主要参与者及其主要产品,这些工业物联网公司及其工业物联网技术产品的优劣对比。分析面临的挑战并展望未来发展趋势,揭示工业物联网平台如何重塑工业生态,推动产业数字化转型迈向智能化。
163页化工动设备讲义(PPT),163页化工动设备讲义(PPT),163页化工动设备讲义(PPT)
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
DeepSeek是一种基于深度学习和人工智能的先进技术平台,专门设计用于金融领域的风险评估和决策优化。其核心技术架构结合了大规模数据处理、机器学习算法和高性能计算能力,能够快速处理和分析海量的结构化和非结构化数据。DeepSeek平台通过多层神经网络模型,能够自动提取数据中的复杂特征,并结合金融领域的专业知识,构建高精度的风险评估模型。其独特之处在于能够动态适应金融市场的变化,通过学习历史数据和实时数据,不断优化模型的预测能力
有的用户觉得DeepSeek不好用,其实可能恰恰是因为给DeepSeek喂了太多的提示词,限制了它的深度思考(如右图,按照四维度分析框架,只得出干巴巴的报告),它与指令性大模型不同,其实是不需要太长的提示词的
推理模型是在基座模型基础上再经过推理数据训练得到的模型,回答问题时会先通过思维链(CoT)逐步思考,再输出结果。 Deepseek R1模型属于一种推理模型。
这是用户和助手之间的对话。 用户提出一个问题,助手解决它,助手首先在脑海中思考推理过程,然后为用户提供答案。推理过程和答案分别包含在<思考></ 思考 >和<回答 ></ 回答 >标签中。即: <思考>推理过程在这里</ 思考> <回答>在这里回答</ 回答>
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南