第10章 数据的统计描述和分析

数理统计研究的对象是受随机因素影响的数据,以下数理统计就简称统计,统计是 以概率论为基础的一门应用学科。 数据样本少则几个,多则成千上万,人们希望能用少数几个包含其最多相关信息的 数值来体现数据样本总体的规律。描述性统计就是搜集、整理、加工和分析统计数据, 使之系统化、条理化,以显示出数据资料的趋势、特征和数量关系。它是统计推断的基 础,实用性较强,在统计工作中经常使用。 面对一批数据如何进行描述与分析,需要掌握参数估计和假设检验这两个数理统计 的最基本方法。 我们将用 Matlab 的统计工具箱(Statistics Toolbox)来实现数据的统计描述和分析。 §1 统计的基本概念 1.1 总体和样本 总体是人们研究对象的全体,又称母体,如工厂一天生产的全部产品(按合格品及 废品分类),学校全体学生的身高。 总体中的每一个基本单位称为个体,个体的特征用一个变量(如 x )来表示,如一 件产品是合格品记 x = 0 ,是废品记 x = 1;一个身高 170(cm)的学生记 x = 170。 从总体中随机产生的若干个个体的集合称为样本,或子样,如n 件产品,100 名学 生的身高,或者一根轴直径的 10 次测量。实际上这就是从总体中随机取得的一批数据, 不妨记作 x1 , x2 ,L, xn ,n 称为样本容量。 简单地说,统计的任务是由样本推断总体。 1.2 频数表和直方图 一组数据(样本)往往是杂乱无章的,做出它的频数表和直方图,可以看作是对这 组数据的一个初步整理和直观描述。 将数据的取值范围划分为若干个区间,然后统计这组数据在每个区间中出现的次 数,称为频数,由此得到一个频数表。以数据的取值为横坐标,频数为纵坐标,画出一 个阶梯形的图,称为直方图,或频数分布图。 若样本容量不大,能够手工做出频数表和直方图,当样本容量较大时则可以借助 Matlab 这样的软件了。让我们以下面的例子为例,介绍频数表和直方图的作法。 例 1 学生的身高和体重 学校随机抽取 100 名学生,测量他们的身高和体重,所得数据如表

  • 2021-10-31
  • 阅读213
  • 下载0
  • 12页
  • pdf

第04章 动态规划

动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20 世纪 50 年代初 R. E. Bellman 等人在研究多阶段决策过 程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程 优化问题的新方法—动态规划。1957 年出版了他的名著《Dynamic Programming》,这 是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广 泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动 态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时 间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为 多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是 一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数 学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习 时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的 技巧去求解。 例 1 最短路线问题 图 1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由 A 到G 距离最短(或费用最省)的路线。 图 1 最短

  • 2021-10-31
  • 阅读221
  • 下载0
  • 12页
  • pdf