• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

自动驾驶算法——理解强化学习(一)

强化学习位于多个领域的交叉点,但其基本理念相同:决策科学。在计算机科学中,它是机器学习;在神经科学中,它是奖励系统。在工程学中,它是最优控制。

  • 2024-12-18
  • 阅读224

自动驾驶算法——理解强化学习(二)

动态规划一般需要具备2个性质:最佳子结构→你可以将某些 RL 问题分解为≥2 个部分,然后解决它们,最后将它们组合起来找到最佳问题,从而解决该问题。重叠子问题→子问题可以出现多次,通过将问题分解为子问题,我们可以获得一些好处。

  • 2024-12-18
  • 阅读212

自动驾驶算法——理解强化学习(四)

首先回顾这个系列前几篇文章:自动驾驶算法——理解强化学习(一) 和 自动驾驶算法——理解强化学习(二)和自动驾驶算法——理解强化学习(三)。

  • 2024-12-19
  • 阅读203

自动驾驶算法——理解强化学习(三)

MC 方法很简单;你只是直接从经验情节中学习。它之所以无模型,是因为没有任何关于 MDP 转换/奖励的知识。它使用简单的“价值 = 平均回报”这一想法从完整的情节中学习。警告:只能将 MC 应用于情节 MDP,并且所有情节都必须终止。

  • 2024-12-19
  • 阅读205

自动驾驶算法——理解强化学习(五)

首先回顾这个系列前几篇文章:自动驾驶算法——理解强化学习(一) 和 自动驾驶算法——理解强化学习(二)和自动驾驶算法——理解强化学习(三)和自动驾驶算法——理解强化学习(四)。

  • 2024-12-19
  • 阅读209

SCI论文学习|一种基于联邦学习的边云协同机器剩余使用寿命预测的方法

本期给大家推荐郭亮教授的一种基于联邦学习的边云协同机器剩余使用寿命预测的方法。针对实际工业应用中智能方法预测剩余使用寿命(Remaining Useful Life)时出现的边缘客户端计算能力较弱、数据量有限以及所有边缘客户端数据不共享的问题,提出了一种基于联邦学习的RUL预测方法——FedRUL。该方法利用多个边缘客户端和一个云服务器在不共享数据的情况下训练全局编码器和剩余寿命预测器。首先,将所有的局部训练数据集馈送到相应的客户端,用于训练自己的卷积自编码器(Convolutional Autoen-coder)。然后,将所有客户端的编码器上传到服务器对编码器进行聚合。最后,服务器将全局编码器和RUL预测器分发给所有客户端,以实现相应的剩余寿命预测任务。通过铣刀数据集和轴承数据集验证了该方法的有效性。

  • 2024-12-19
  • 阅读284

IEEETII一种可解释的增量随机权重神经网络构造算法及其应用

本文旨在为增量随机权重神经网络(IRWNN)提供一种可解释的学习范式。IRWNNs因其易于部署和快速学习速度而成为神经网络算法的热门研究方向。然而,现有的IRWNN难以解释隐藏节点(参数)如何影响网络残差的收敛。为了解决这一差距,本文提出了一种可解释的构造算法(lCA)。具体来说,我们首先对网络构建过程进行空间几何分析,建立网络残差和隐藏参数之间的空间几何关系,以可视化隐藏参数对网络残差收敛的影响。其次,基于空间几何关系和节点池策略,建立了一种具有空间几何信息的可解释控制策略,以获得有助于网络残差收敛的隐藏参数。此外,为了便于lCA处理大数据的复杂任务,本文提出了一种低复杂度的轻量级ICA,即ICA+。最后,从理论上证明了本文提出的ICA和ICA+具有普遍的逼近性质。在两个真实世界数据集和七个基准数据集上的实验结果表明,所提出的ICA和ICA+在快速学习、良好泛化和网络结构紧凑性方面具有优势。关键词:数据建模、可解释构造算法、神经网络(NN)、随机算法、空间几何信息。

  • 2024-12-16
  • 阅读333

JCP||基于有限元启发的超图神经网络:在流体动力学模拟中的应用

深度学习研究中的一个新兴趋势是图神经网络(GNNs)在基于网格的连续介质力学模拟中的应用。这些学习框架大多作用于图上,其中每条边连接两个节点。受有限元方法中数据连接性的启发,我们提出了一种通过元素而非边连接节点来构建超图的方法。在这种超图上定义了一种超图消息传递网络,该网络模拟了局部刚度矩阵的计算过程。我们将这种方法称为基于有限元启发的超图神经网络,简称为FEIH()-GNN。我们进一步为所提出的网络配备了旋转等变性能力,并探索其在非稳态流体流动系统建模中的潜力。网络的有效性在两个常见的基准问题上得到了验证,即圆柱和翼型的流体流动配置。在插值雷诺数范围内,使用-GNN框架可以获得稳定且准确的时间滚动预测。该网络还能够向更高雷诺数域外进行外推,这超出了训练范围。

  • 2024-12-15
  • 阅读358
上一页 1 …… 1592415925159261592715928159291593015931159321593315934 …… 16461 下一页 共 131687 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读121
  • 下载2

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读103
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读112
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读160
  • 下载5

最新上线

人工智能赋能教育高质量发展

从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。

  • 阅读19
  • 下载1

2025年度低空经济投资策略

市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。

  • 阅读27
  • 下载0

数字档案馆标准建设方案

XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。

  • 阅读39
  • 下载0

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读81
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南