• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

【ASC】一种新的人工神经网络在预测相关多变量时间序列中改进了多变量特征提取

现有的多变量时间序列预测方案在提取中间特征方面效率低下。本文提出了一种称为特征路径有效多变量时间序列预测(FPEMTSP)的人工神经网络,用于在存在多个次级时间序列的情况下预测主时间序列的下一个元素。我们建议生成次要时间序列的所有可能组合,并通过对主要和次要时间序列特征进行笛卡尔乘积来提取多变量特征。我们的计算证明了FPEMTSP的复杂性和网络规模是可以接受的。我们考虑了FPEMTSP中的一些内部参数,这些参数可以配置为提高预测精度和调整网络大小。我们使用两个公共数据集对FPEMTSP进行了训练和评估。我们的评估揭示了内部参数的最优值,并表明FPEMTSP在预测精度和正确预测的步数方面超过了现有方案。

  • 2024-05-26
  • 阅读164

【ASC】基于滑动窗口经验模式分解的自组织模块化神经网络用于时间序列预测

时间序列在实际世界中大多具有混沌性和非平稳性,难以准确建模和预测。为了解决这个问题,我们引入了一种新的基于滑动窗口机制的经验模式分解的自组织模块化神经网络(SWEMD-MNN)用于时间序列预测。在SWEMD-MNN中,开发了改进的滑动窗口经验模式分解(SWEMD)来在线分解时间序列,可以有效地缓解传统的基于EMD的模型无法处理长期或在线问题和终端效应的局限性。因此,SWEMD-MNN可以有效、动态地分解基于时间特征的时间序列,提高基于样本空间划分时间序列的经典模块化神经网络的预测精度。然后,利用样本熵和欧氏距离,利用单层前馈神经网络将时间子序列动态分配给子网络进行学习。使用基准混沌和真实世界时间序列的实验研究表明,SWEMD-MNN可以有效动态地分解时间序列,并提供比全耦合网络和其他MNN模型更好的时间序列预测精度。

  • 2024-05-26
  • 阅读445

【IEEETII】基于错误触发字典学习的工业过程监控云边缘协同方法

云制造的发展使数据驱动的过程监控方法能够准确、及时地反映真实的工业过程状态。然而,传统的过程监控方法一旦被部署到边缘设备上,就无法更新学习的模型,这导致在面对时变数据时模型不匹配。此外,边缘的有限资源使其无法部署复杂的模型。因此,本文提出了一种新颖的云边缘协同过程监控方法。首先,收集工业过程的历史数据,建立字典学习模型,并在云中训练字典和分类器。然后,将模型简化并部署到边缘。边缘层监控过程状态,包括故障检测和工况识别,并根据错误触发策略确定是否发生了模型失配。数值模拟和工业焙烧过程结果验证了该方法的优越性。

  • 2024-05-25
  • 阅读172

【IEEETASE】基于BPMN扩展的工业互联网应用业务流程建模

业务流程建模在现代组织中被广泛用于业务描述。业务流程建模符号(BPMN)作为一种事实上的建模标准,以图形符号表示业务流程模型。然而,BPMN缺乏工业互联网应用场景的直观建模任务(例如,物联网任务和有约束的多实例任务)。尽管有一些关于扩展BPMN元素以改进模型表示的工作,但它们大多只停留在概念模型中,没有工具支持,或者仅限于特定领域。在本文中,我们扩展了BPMN元素和属性以用于工业互联网环境中的应用,并在客户端版本和Web版本中实现了两个建模工具,以通过低代码支持业务流程建模,使BPMN扩展模型从概念级扩展到可执行级。在工业互联网中进行了两个真实世界的案例研究,以展示具有BPMN扩展的过程模型的有用性。此外,还进行了全面的用户实验来评估扩展的流程模型和工具,实验结果表明,与传统的流程模型相比,具有扩展功能的流程模型具有更好的质量,所提供的工具对工业互联网应用中的业务流程建模是有效的。

  • 2024-05-25
  • 阅读279

【IEEETII】基于深度学习和多重注意机制的自解释软测量:从数据选择到传感器建模

对于基于深度学习的软测量来说,缺乏可解释性以及随之而来的不可靠性已经成为最重要的问题之一。在这篇文章中,神经网络计划称为深度多注意力软传感器(DMASS),它完全由注意力机制,提出了开发一个自解释的软测量。DMASS的建立是为了确保数据选择和传感器建模的自解释性,并试图将这些原本独立的阶段整合到单一的方案中。首先将现有注意机制的核心实现步骤归纳为统一的形式,然后提出了可变注意机制和时滞注意机制。当DMASS的训练完成时,所获得的注意力权重提供可自解释的数据选择结果。然后,提出了一种自注意力激活结构(SAAS)来提取数据的非线性时空特征。所提取特征的数学表达式、SAAS的注意力矩阵、DMASS训练的信息路径图以及不确定性感知的区间预测显示了传感器建模的自解释性。最后,将DMASS应用于空气预热器转子热变形的预测,通过已知机理分析和信息瓶颈理论验证了DMASS自解释能力的有效性。同时,通过与其他新型软测量方法的比较,验证了DMASS的良好传感性能。

  • 2024-05-25
  • 阅读243

【JIM】用于工业缠绕过程建模的增强型布谷鸟搜索算法

非线性工业系统的建模包括两个关键阶段:选择具有紧凑参数列表的模型结构和选择估计参数列表值的算法。因此,需要开发一个足够充分的模型来表征工业系统的行为,以表示实验数据集。为许多工业系统收集的数据可能存在高度非线性和多重约束。同时,为工业过程创建一个全面的模型对于基于模型的控制系统至关重要。在这项工作中,我们探索使用所提出的Cuckoo Search(ECS)算法的增强版本来解决实际缠绕过程的线性和非线性模型结构的参数估计问题。将所开发的模型的性能与其他主流元启发式方法进行比较,以对同一过程进行建模。此外,还将这些模型与基于一些传统建模方法开发的其他模型进行了比较。进行了几次评估测试来判断基于ECS开发的模型的效率,与其他建模方法相比,ECS在训练和测试案例中都表现出了优越的性能。

  • 2024-05-25
  • 阅读156

【ESWA】具有命题线性时序逻辑的工业模糊时间序列动态软传感器

模糊时间序列(FTS)模型被广泛用于预测时间序列数据。然而,对于工业时间序列数据,FTS的预测结果较差,尤其是当数据变化迅速且数量巨大时。因此,提出了一种基于带滑动窗口的命题线性时间逻辑(PLTL)的动态软传感器模型。首先,使用滑动窗口提取动态数据。然后通过FTS对提取的数据进行建模,生成初始预测结果。最后,根据窗口中的数据,生成PLTL公式来描述数据的趋势。生成的公式被用作窗口中数据的正式标签,以对初始预测结果进行加权。用TAIEX数据集对所提出的方法进行了验证。方差分析用于测试所选数据集的显著性。实验结果表明,该方法具有良好的回归预测性能。最后介绍了一个工业应用实例。实验结果证明了该模型对工业时间序列数据的有效性。

  • 2024-05-25
  • 阅读156

【IEEETII】基于迁移学习的有限数据工业过程时间序列预测方法

工业时间序列作为一种响应生产过程信息的数据,可以进行分析和预测,以有效地监测工业生产过程。工业建模过程中,由于工况复杂、数据采集环境变化、设备运行时间短等原因,存在数据短缺、算法冷启动等问题。因此,现有的数据驱动工业时间序列预测算法的准确性受到很大限制。针对上述问题,本文提出了一种新的基于动态迁移学习的有限数据下工业过程时间序列预测方法,该方法旨在有效地利用相似设备或工况的历史数据,而不是丢弃它们,以帮助建立目标数据有限的工业时间序列预测模型。在该方法中,首先将历史数据划分为多个批次,然后根据每一批次历史数据与当前时刻有限目标数据之间的分布距离,建立一个新的具有动态最大均差损失的多源迁移学习框架。该框架还结合了多任务学习方法,建立了工业过程在线学习的多步骤预测模型。与其他常用方法相比,在太阳能发电预测和加热炉温度预测两个真实数据集上的实验证明了该方法的有效性。

  • 2024-05-25
  • 阅读929
上一页 1 …… 806807808809810811812813814815816 …… 896 下一页 共 7163 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读70
  • 下载1

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读64
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读76
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读121
  • 下载4

最新上线

“人工智能+”行动深度解读与产业发展机遇

大模型泛化能力加速具身智能发展,2025年人形机器人进入量产元年资本需求量大,整机布局在一二线城市,关节模组、减产业处于起步阶段,招商代价高,速器、无框力矩电机/空心杯电机、精密传感器、轴承等为各地重点招商方向

  • 阅读10
  • 下载0

低空数据政策分析报告(2025 年)

场景的数据共享复用。在低空改革试点省份(如湖南、深圳),试点数据要素市场化改革,探索低空数据确权登记、评估定价、交易流通。

  • 阅读9
  • 下载0

AI视频生成技术原理与行业应用报告

技术没有终点,只有不断迭代的里程碑。AI视频技术的发展,最终将指向“人机共创”的新范式。它不会简单地替代人类创作者,而是将人类从繁琐的重复劳动中解放出来,去专注于更具价值的创意构思与情感表达。 现在的AI,是AIGC和Agent的阶段,下一步

  • 阅读8
  • 下载0

数字档案馆(室)解决方案

档案管理状态下的文件已经正式成为档案。在该状态下,档案的目录信息和原文信息将不能被修改和删除。 档案管理人员在档案管理状态需要完成的工作一般包括:档案目录的打印和档案装盒以档案上架操作,同时对发现有问题的档案可以进行取消归档,将其退回到文件整理中重新鉴定整理,

  • 阅读7
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南