【JIM】用于工业缠绕过程建模的增强型布谷鸟搜索算法
非线性工业系统的建模包括两个关键阶段:选择具有紧凑参数列表的模型结构和选择估计参数列表值的算法。因此,需要开发一个足够充分的模型来表征工业系统的行为,以表示实验数据集。为许多工业系统收集的数据可能存在高度非线性和多重约束。同时,为工业过程创建一个全面的模型对于基于模型的控制系统至关重要。在这项工作中,我们探索使用所提出的Cuckoo Search(ECS)算法的增强版本来解决实际缠绕过程的线性和非线性模型结构的参数估计问题。将所开发的模型的性能与其他主流元启发式方法进行比较,以对同一过程进行建模。此外,还将这些模型与基于一些传统建模方法开发的其他模型进行了比较。进行了几次评估测试来判断基于ECS开发的模型的效率,与其他建模方法相比,ECS在训练和测试案例中都表现出了优越的性能。