【IEEETII】基于时空注意力孪生网络的有限传感器数据风机叶片结冰检测新方法
本文主要研究风力涡轮机叶片结冰检测(ID)的数据驱动方法。鉴于传感器技术在风力涡轮机中的广泛应用,这种数据驱动的ID方法变得越来越突出。然而,目前的方法存在不足,特别是在确认多元传感器数据的结构特性和区分结冰阶段方面,这两个方面对识别故障模式都至关重要。为了弥补这些差距,我们提出了一种用于刀片ID的时空注意力孪生网络(SN)。该模型采用孪生网络架构,在类不平衡的情况下进行高效的少镜头学习。它独特地结合了图注意力网络和门控递归单元,用于从传感器数据中提取时空特征。这种设计不仅承认了数据的空间结构,而且清楚地识别了与各种结冰阶段相关的特征。使用来自监控和数据采集系统的实际传感器数据验证了STASN的功效。结果证明了SN识别不同结冰阶段特征的能力及其在早期结冰预测中的潜力。这项研究强调了SN在为叶片结冰提供先进、灵活的故障警报方面的实用性,代表了风力涡轮机维护和安全方面的重大进步。