• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

【IEEETASE】基于掩码前层次结构插补框架的工业时间序列停电丢失数据恢复

在工业过程中,频繁的通信故障和信息损坏可能会导致工业过程数据的完整块丢失,也称为停电丢失数据。工业时间序列的不完整数据阻碍了后续建模和控制任务的执行。然而,传统的矩阵分解或监督学习数据插补方法很难应用于恢复停电丢失数据的艰巨任务。输入停电数据的困难源于两个主要因素:输入过程缺乏共同进化变量的参考,停电数据在分布上具有很强的自相关性和漂移性。为了解决这些问题,本文开发了一种基于屏蔽变压器网络(屏蔽变压器)的新型分层插补框架,用于恢复停电数据。首先,创新性地提出了一种具有随机掩码点的重建块策略,以提高模型在不完整数据集的不同工作条件下恢复缺失值的能力。然后,基于所提出的不完整数据集,该方法利用卷积网络的局部特征捕获能力和自关注机制的样本级远程依赖捕获能力,分别完成粗粒度和细粒度缺失数据的插补。最后,进行了扩展实验,以验证所提出的方法在两个真实工业数据集上的优越性能。

  • 2024-10-09
  • 阅读317

【IEEETNNLS】用于工业数据序列建模的分层自关注网络,在输入和输出序列之间具有不同的采样率

对于工业过程,进行数据序列的动态建模对于质量预测具有重要意义。然而,输入和输出序列之间的采样率通常不同。对于最传统的数据序列模型,它们必须仔细选择标记的样本序列来构建动态预测模型,而标记样本之间的大量未标记的输入序列则被直接丢弃。此外,在每个标记步骤的质量预测中,通常没有充分考虑变量和样本的相互作用。为了解决这些问题,我们设计了一个层次化的自我注意网络(HSAN)用于自适应动态建模。在HSAN中,首先为每个标记步骤设计动态数据增广,以包括未标记的输入序列。然后,提出了一个可变水平的自我关注层来学习可变交互和短间隔时间依赖性。之后,进一步开发了一个样本级的自我关注层来模拟长时间间隔的时间依赖关系。最后,构建了一个长短期记忆网络(LSTM)网络来对包含大量相互作用的新序列进行建模,以进行质量预测。在工业加氢裂化过程中的实验表明了HSAN的有效性。关键词:深度学习、分层自关注网络(HSAN)、质量预测、自关注机制、软传感器。

  • 2024-10-09
  • 阅读387

【AEI】工业过程少样本故障检测的无监督域对抗网络

工业过程正在变得更大、更集成,导致不同操作条件之间的频繁转换。在新的操作条件下对流程进行故障检测时,样本的稀缺性对构建有效的监控模型构成了重大挑战。为了解决样本较少的故障检测问题,我们提出了一种称为DASAE的方法。该方法基于堆叠式自动编码器(SAE),并结合了域对抗(DA)技术,通过从数据丰富的源域(历史工作模式)传输有价值的信息来对数据贫乏的目标域(新的工作模式)进行建模。DASAE涉及一种新的无监督知识转移范式,该范式依赖于领域相似性,而无需标签指导。为了应对对抗训练中数据不平衡的挑战,我们引入了一种主要的不平衡感知裕度损失(DlAM),通过鼓励少数域有更大的裕度来缓解这一问题。所提出的方法使用数值案例和现实世界的行业案例——连续搅拌釜反应器(CSTR)进行了评估。结果表明,在少数样本场景中,与其他最先进的方法相比,所提出的方法通常表现出最佳性能,在和SPE指标上都显示出增强的检测效果。关键词:领域对抗训练、不平衡数据、堆叠式自动编码器、故障检测、少量样本

  • 2024-10-09
  • 阅读535

【RSER】工业过程的能源消耗和碳排放预测:现状、挑战和前景

工业过程消耗大量能源并排放大量二氧化碳。借助准确的能源消耗和碳排放预测,工业企业将更容易实现清洁生产,优化能源结构,通过更深入地控制生产情况来降低生产成本和碳排放。由于机器学习建模方法的过度饱和,预测模型在提高准确性和提取数据特征方面面临困难。引入深度学习方法来解决这些问题,然而,数据传输中关键参数和异常的不准确测量加剧了工业大数据的不确定性。这使得基于机器学习的预测模型表现出很强的不确定性和较差的泛化能力。因此,提高当前工业能耗和碳排放预测模型在不同工业情景下的准确性非常困难。本文总结了近年来工业过程能耗和碳减排预测的研究。结合当前工业过程的实际问题,本文总结了三种预测模型:(i)基于深度学习和模型不确定性相结合的多步预测模型,(i)结合机制和数据驱动方法的预测模型,以及(ii)基于智能算法的预测模型。这些模型将成为未来建立通用工业过程能耗和碳排放预测模型的新途径。关键词:系统集成与分析、碳排放、节能减排、深度学习、人工智能

  • 2024-10-09
  • 阅读412

【IEEETII】基于VMD和LSTM的电网安全负荷预测混合模型

电力负荷预测作为电网静态安全的基础,直接影响电网运行的安全性、电网规划的合理性和供需平衡的经济性。然而,各种因素导致短期电力消耗发生剧烈变化,使数据更加复杂,因此更难预测。针对这一问题,本文提出了一种基于变分模分解和长短期记忆的新的混合模型,该模型消除了季节因素并进行了误差校正。对新加坡和美国的四个真实负载数据集进行了全面的案例研究,以证明所提出的混合模型的有效性和实用性。实验结果表明,所提出的模型的预测精度明显高于对比模型。关键词:误差修正、电网安全季节性因素消除、短期负荷预测(STLF)。

  • 2024-10-09
  • 阅读254

【Energy】用于安全关键能源系统可靠健康监测的不确定性感知深度学习

近年来,深度学习技术的重大进步促进了能源系统智能健康监测方法的发展。然而,在处理核能系统等安全关键能源系统时,具有点估计的传统深度学习模型无法解释预测中的固有不确定性,这一局限性对为关键操作提供可靠和值得信赖的决策支持提出了挑战。为了克服这一挑战,本研究提出了一种新的智能监测方法,该方法集成了不确定性感知的深度神经网络。首先,提出了一个基于时空状态矩阵的信号预处理方法,以提高特征提取能力,从而有效地整合各种多源数据。其次,开发了一种概率分布,为所有网络参数生成预测不确定性,从而能够评估模型输出的置信度,不仅适用于已知的操作场景,也适用于未知的操作场景。最后,使用已建立的先进核能研究平台和公共核事故模拟平台进行实验,确保所提出方法在实际环境中的有效性和适用性。总体而言,拟议的方法显著提高了监测输出的可靠性和可信度,同时降低了与安全关键能源系统决策过程相关的风险。关键词:安全关键能源系统、不确定性感知深度学习、智能健康监测、值得信赖的决策。

  • 2024-10-08
  • 阅读291

【ASC】基于自适应残差CNN的小型模块化电抗器故障检测与诊断系统

随着工业4.0技术的发展,降低维护成本并结合深度学习(DL)技术确保新型核系统的安全是一种流行趋势。本文提出了一种基于设计的自适应残差卷积神经网络(ARCNNs)的小型模块化反应堆(SMR)智能故障检测与诊断系统(lFDD)。不同噪声水平下的特征被学习为残差,并通过设计的网络传递。此外,自适应残差处理(ARP)模块中组装的软阈值(ST)方法提高了学习效率。采用贝叶斯优化(B0)方法提高设计网络的学习衰减率(LDR),以获得更好的诊断性能。从已建立的中国铅基核反应堆(CLEAR)平台上收集了11种不同操作场景下三种不同噪声水平的1760个实验数据点,以验证所提出的LFDD的有效性。与以往工作中采用的传统RCNN和CNN的比较突显了所提出的诊断方法的优越性。使用B0方法进一步提高了lfDD的性能。作为SlMR智能研究的首次尝试,该方法将为无人值守条件下的核操作员提供远程决策支持。此外,该通用方法也可应用于其他无噪声环境下的诊断系统。关键词:故障检测与诊断、深度学习、残差CNN、贝叶斯优化、小型模块化反应堆。

  • 2024-10-08
  • 阅读333

【IJER】大数据环境下基于小批量卷积神经网络的核能生产安全故障诊断系统

在核能生产中,随着大数据和工业4.0时代的不断创新和挑战,保证无故障运行安全将变得更加复杂和智能化。本文提出了一种新的具有小批量处理的优化卷积神经网络(SCNN),并将其组装在核故障诊断系统中。使用包含全部316个模拟器传感器特征的11种正常和故障条件来评估所提出的诊断系统的性能。与正常操作和在相同条件下添加退出操作相比,使用SCNN进行批量归一化的应用显著优化了模型验证的准确性和100个迭代下的损失。此外,通过比较传统的二元和多重分类方法,突出了出色的诊断准确性。该诊断系统实现了更精确的诊断准确性,将为操作人员提供有益的指导,帮助他们做出准确快速的决策,确保核能生产安全。关键词:卷积层可视化、卷积神经网络、深度学习、故障诊断、核能生产、小批量处理.

  • 2024-10-08
  • 阅读299
上一页 1 …… 5455565758596061626364 …… 2876 下一页 共 23002 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读119
  • 下载2

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读102
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读111
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读159
  • 下载5

最新上线

人工智能赋能教育高质量发展

从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。

  • 阅读18
  • 下载1

2025年度低空经济投资策略

市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。

  • 阅读25
  • 下载0

数字档案馆标准建设方案

XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。

  • 阅读37
  • 下载0

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读78
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南