神经网络的工作原理介绍
在机器学习和相关领域,人工神经网络的计算模型灵感正是来自生物神经网络:每个神经元与其他神经元相连,当它兴奋时,就会像相邻的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过了一个阈值,那么它就会被激活(兴奋),向其他神经元发送化学物质。人工神经网络通常呈现为按照一定的层次结构连接起来的“神经元”,它可以从输入的计算值,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。并且它也被用于估计或可以依赖于大量的输入和一般的未知近似函数,来最大化的拟合现实中的实际数据,提高机器学习预测的精度。