联邦学习(Federated Learning)作为人工智能的一个新分支,为机器学习的新时代打开了大门。自发展以来,其定义早已超过了早期提出范围,以至于现在只要出于隐私保护目的的多方机器学习都将其归属于「联邦学习」这一范畴。也有人对「联邦学习」这一名称提出异议,本文从实际应用的角度重新梳理了「联邦学习」的前世今生,希望能为读者提供一个新的联邦学习研究视角。
近日,零壹财经推出国内首个系统研究隐私计算在金融领域应用的报告《开启新纪元:隐私计算在金融领域应用发展报告(2021)》,从隐私计算落地最为密集的金融业开始,展示隐私计算发展中真实而鲜活的产业生态,让产业实践者们被看见、被发现。本报告研究机构为零壹财经·零壹智库,联合发布单位为中国科技体制改革研究会数字经济发展研究小组、深圳市信用促进会、横琴数链数字金融研究院,同时得到了同盾科技、星云clustar、瑞莱智慧、金智塔科技和天冕科技的研究支持。
2016年,Google在《Federated Learning: Strategies for Improving Communication Efficiency》论文中,首先提出“联邦学习”(Federated Learning)的概念,该方法能够联合分布于多个移动终端上的数据,实现云端模型的训练。联邦学习的核心,在于模型中心化,数据去中心化。其目的是保护用户隐私与数据安全。
随着数字化时代的来临,大数据、人工智能等精尖技术进入了高速发展阶段。然而,对一些行业而言,存在数据样本量少、特征少、标注信息缺失、数据质量差等问题,同时由于相同行业不同企业间的竞争以及同一企业中不同业务条线、业务系统间的阻隔性等情况,难以实现有效的数据信息交流与整合,易造成“数据孤岛”现象,这使大数据、人工智能相关技术难以发挥出预期的应用效果。
横向联邦学习(Horizontal Federated Learning)[1][2]也称按样本划分的联邦学习,可以应用于联邦学习各参与方的数据集有重叠的特征空间和不同的数据样本的场景。举例来说,两个地区的通信运营商在各地有自己的用户群体,他们之间的用户交集非常小,因此他们的数据集中有不同的样本ID,但他们的业务非常相似,因此他们之间的特征空间是相同的。联合进行横向联邦学习可以更好的构建套餐推荐等模型。
联邦学习在2016年由谷歌提出,因为Google有安卓系统,需要解决多个安卓设备的分布式建模问题。其中,主要是针对输入法的建模,比如客户在安卓输入法中输入单词“what”,或许他可能想继续输入“do you think”,Google输入法如果能自动联想出来,用户体验就会变得比较好,但是自动联想功能需要大量的用户数据才能学习出来,怎么获得这些用户数据呢?
在大数据和人工智能时代,数据被喻为“黄金”和“石油”越来越被重视。各行业数字化转型的核心要点之一是数据智能技术的应用,而其基础在于海量、多维数据的汇总、加工和算法模型训练。这一过程中同时带来的则是数据安全和隐私问题——大量带有客户、产品和交易信息的敏感数据容易产生法律、合规问题,亦频繁出现数据的不合法泄露问题。
同态加密(英语:Homomorphic encryption)是一种加密形式,它允许人们对密文进行特定形式的代数运算得到仍然是加密的结果,将其解密所得到的结果与对明文进行同样的运算结果一样。换言之,这项技术令人们可以在加密的数据中进行诸如检索、比较等操作,得出正确的结果,而在整个处理过程中无需对数据进行解密。其意义在于,真正从根本上解决将数据及其操作委托给第三方时的保密问题,例如对于各种云计算的应用。
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
随着AI技术的爆发式发展,AI技术正从锦上添花的辅助工具,演变为驱动企业业务创新与效率变革的关键力量。但在新一代AI应用的规模化落地过程中,企业也面临着更加复杂的挑战。其应用成果不仅依赖于单一的技术突破,更在于构建系统性、端到端的落地能力。本报告将从应用层、支撑层、基础设施层和组织层四个维度,对企业级AI应用落地中的关键问题展开研究,力求帮助企业将AI技术转化为实际的商业价值。
在“新型工业化”浪潮奔涌的今天,数字化转型已成为各行各业发展的必修课。如何精准、高效地推进转型,避免“走弯路”?
脑机接口技术涉及到对个人思想的直接访问。人们不仅可以窥探他人的思想,更可以直接对他人的思想和行为进行干预控制。甚至篡改记忆。
现代化产业体系的构建,不仅需要培育新兴产业,也离不开传统产业的全面升级。《建议》对传统产业转型提出了明确方向,主要包括以下四个方面:一是推动重点产业提质升级。《建议》指出需巩固提升矿业、冶金、化工、轻工
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南