本文件规定了绿色数据中心的评价体系框架、等级划分及评价对象、评价方法、评价程序、评价报告和复核监督。 本文件适用于深圳市绿色数据中心的评价活动
为全面排查化工园区安全风险,规范化工园区建设和安全管理,系统提升化工园区本质安全水平,增强化工园区安全应急保障能力,防范危险化学品重特大安全事故,依据《安全生产法》《危险化学品安全管理条例》等有关法律法规和标准规范,制定本导则。
本标准为全文强制。 自标准实施之日起,北京市印刷业关于挥发性有机物排放控制按本标准执行,不再执行DB11/501-2007《大气污染物综合排放标准》 本标准依据GBT1.1-2009给出的规则起草 本标准由北京市环境保护局提出并归口。 本标准由北京市人民政府于2015年5月13日批准。 本标准由北京市环境保护局组织实施。本标准主要起草单位:北京市环境保护科学研究院、解放军防化研究院、北京印刷协会本标推主要起草人:聂磊、王敏燕、潘涛、栾志强、张伟、邵雷、任玉成、李国吴、高喜超、刘木兴、任培芳、袁勋、闫磊、李靖、何万清、王海林、高美平
本文详细评估了深度学习(DL)模型在旋转机械智能诊断中的应用,旨在通过深度学习技术改善旋转机械故障的诊断准确性和可靠性。作者通过分析不同数据集和超参数推荐使用的问题,并且因公开源代码的缺乏导致不公平的比较和效果提升无效,进行了综合性评价。通过使用四种模型(多层感知器MLP、自动编码器AE、卷积神经网络CNN和循环神经网络RNN)和七个数据集进行基准研究,旨在为旋转机械的智能诊断提供一个基准研究。
现代经济依赖于制造业、能源、石化、制造业、能源、石化、交通运输和国防装备的可靠、不间断运行。实施故障预测与健康管理(PHM)技术是保证设备安全运行的重要方向。成本低、经久耐用、功率重量比高、能量转化率优异的电机逐渐成为各行业的核心驱动设备。电机故障普遍存在,因此状态监测和故障诊断至关重要。恶劣的工作环境和频繁的负载变化是电机故障的主要原因。电机故障或突然停止服务可能会严重危及整个生产系统的安全,除电动机本身受到伤害外,还会造成重大的生产损失。因此,需要对电机进行及时的状态监测和故障诊断,防止意外事故的发生。及时评估电机还可以实现最佳维护策略的调度,例如何时更换关键部件,最大限度地提高可用性,最大限度地减少停机时间,并最大限度地降低维护成本。
针对基于图卷积网络(GCN)的故障诊断方法大多默认节点间的权重相同、导致诊断精度较低与鲁棒性较差的问题,提出了一种基于欧式距离和余弦距离的 GCN 故障诊断方法(EC-GCN)。
基于数据驱动的轴承故障诊断方法依赖大量标记数据,而在实际生产过程中很难收集到大量的数据。因此小样本的轴承故障诊断具有很高的研究价值。
为了更加有效的从多传感器原始故障数据中提取出故障特征,解决单一诊断算法提取时序数据特征时的信息丢失问题,提出了一种基于改进 LSTM-GCNN 的深度循环卷积神经网络新算法用于机械装备大数据的故障智能诊断。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
机器学习与深度学习有着明显的异同点 在数据准备和预处理方面,两者是很相似的。他们都可能对数据进行一些操作:数据清洗、数据标签、归一化、去噪、降维。核心区别:传统机器学习的特征提取主要依赖人工,针对特定简单任务的时候人工提取特征会简单有效,但是并不能通用;深度学习的特征提取并不依靠人工,而是机器自动提取的。这也是为什么都说深度学习的可解释性很差,因为有时候深度学习虽然能有好的表现,但是我们并不知道他的原理是什么。
2025年是中国人工智能规划中期规划的关键节点,AI场景解决方案从“能用”到“有用”到“好用”在垂2025年中国AI产品在用户规模与产品数量上已具备全球竞争力
当今世界,低空经济正以前所未有的速度重塑产业格局与城市发展模式。作为融合通用航空、无人机应用、智能网联、先进制造等多领域的新质生产力代表,低空经济不仅承载着缓解城市交通压力、提升公共服务效能、培育经济增长新动能的使命,更成为衡量国家和地区科技创新与产业竞争力的关键指标。中国低空经济市场规模有望在2032年达到2.5万亿规模,其广阔前景吸引全球目光。然而,产业爆发式增长的背后,空域资源释放不足、基础设施系统性瓶颈、技术标准体系滞后、商业模式成熟度低、公众信任度待提升等核心挑战,正深刻制约着低空经济从“试点探索”迈向“全域协同”的规模化发展进程。
新型智慧城市是推动城市高质量发展以及经济发展的重要途径新型智慧城市是推动城市高质量发展以及经济发展的重要途径新型智慧城市是推动城市高质量发展以及经济发展的重要途径
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南