第26章 经济与金融中的优化问题

本章主要介绍用 LINGO 软件求解经济、金融和市场营销方面的几个优化问题的案 例。 §1 经济均衡问题及其应用 在市场经济活动中,当市场上某种产品的价格越高时,生产商越是愿意扩大生产 能力(供应能力),提供更多的产品满足市场需求;但市场价格太高时,消费者的消费 欲望(需求能力)会下降。反之,当市场上某种商品的价格越低时,消费者的消费欲望 (需求能力)会上升,但生产商的供应能力会下降。如果生产商的供应能力和消费者的 需求能力长期不匹配,就会导致经济不稳定。在完全市场竞争的环境中,我们总是认为 经济活动应当达到均衡(equilibrium),即生产和消费(供应能力和需求能力)达到平 衡,不再发生变化,这时该商品的价格就是市场的清算价格。 下面考虑两个简单的单一市场及双边市场的具体实例,并介绍经济均衡思想在拍 卖与投标问题、交通流分配问题中的应用案例。 1.1 单一生产商、单一消费者的情形 例 1 假设市场上只有一个生产商(记为甲)和一个消费者(记为乙)。对某种商 品,他们在不同价格下的供应能力和需求能力如表 1 所示。举例来说,表中数据的含义 是:当单价低于 2 万元但大于或等于 1 万元时,甲愿意生产 2t 产品,乙愿意购买 8t 产 品;当单价等于或低于 9 万元但大于 4.5 万元时,乙愿意购买 2t 产品,甲愿意生产 8t 产品;依次类推。那么的市场价格应该是多少? 表 1 不同价格下的供应能力和需求能力 生产商(甲) 消费者(

  • 2021-10-31
  • 阅读196
  • 下载0
  • 38页
  • pdf

第27章 生产与服务运作管理中的优化问题

本章主要介绍生产和服务运作管理方面的一些优化问题。实际上,生产和服务运作 管理的内容也是非常丰富的,几乎包含了企业管理的所有方面,本章中只是介绍几个实 例而已。 §1 有瓶颈设备的多级生产计划问题 1.1 问题实例 在制造企业的中期或短期生产计划管理中,常常要考虑如下的生产计划优化问题: 在给定的外部需求和生产能力等限制条件下,按照一定的生产目标(通常是生产总费用 最小)编制未来若干个生产周期的最优生产计划,这种问题在文献上一般称为批量问题 (lotsizing problems)。所谓某一产品的生产批量(lotsize),就是每通过一次生产准备生 产该产品时的生产数量,它同时决定了库存水平。由于实际生产环境的复杂性,如需求 的动态性,生产费用的非线性,生产工艺过程和产品网络结构的复杂性,生产能力的限 制,以及车间层生产排序的复杂性等,批量问题是一个非常复杂、非常困难的问题。 我们通过下面的具体实例来说明这种多级生产计划问题的优化模型。这里“多级” 的意思是需要考虑产品是通过多个生产阶段(工艺过程)生产出来的。 例 1 某工厂的主要任务是通过组装生产产品 A ,用于满足外部市场需求。产品 A 的构成与组装过程见图 1,即 D, E, F,G 是从外部采购的零件,先将零件 D, E 组装成 部件 B ,零件 F,G 组装成部件C ,然后将部件 B,C 组装成产品 A 出售。图中弧上的 数字表示的是组装时部件(或产品)中包含的零件(或部件)的数量(可以称为消耗系 数),例如 DB弧上数字“9”表示组装 1 个部件 B 需要用到 9 个零件 D ; BA 弧上的 数字“5”表示组装 1 件产品 A 需要用到 5 个部件 B ;依此类推。 图 1 产品构成与组装过程图 假设该工厂每次生产计划的计划期为 6 周(即每次制定未来 6 周的生

  • 2021-10-31
  • 阅读234
  • 下载0
  • 29页
  • pdf

第28章 灰色系统理论及其应用

客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解, 人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断 来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章 介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何 对实际问题进行分析和解决。 §1 灰色系统概论 客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互 联系而构成一个整体,我们称之为系统。按事物内涵的不同,人们已建立了工程技术、 社会系统、经济系统等。人们试图对各种系统所外露出的一些特征进行分析,从而弄清 楚系统内部的运行机理。从信息的完备性与模型的构建上看,工程技术等系统具有较充 足的信息量,其发展变化规律明显,定量描述较方便,结构与参数较具体,人们称之为 白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的 物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了 解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。这类系统 内部特性部分已知的系统称之为灰色系统。一个系统的内部特性全部未知,则称之为黑 色系统。 区别白色系统与灰色系统的重要标志是系统内各因素之间是否具有确定的关系。 运动学中物体运动的速度、加速度与其所受到的外力有关,其关系可用牛顿定律以明确 的定量来阐明,因此,物体的运动便是一个白色系统。 当然,白、灰、黑是相对于一定的认识层次而言的,因而具有相对性。某人有一 天去他朋友家做客,发现当外面的汽车开过来时,他朋友家的狗就躲到屋角里瑟瑟发抖。 他对此莫名其妙。但对他朋友来讲,狗的这种行为是可以理解的,因为他知道,狗在前 不久曾被汽车撞伤过。显然,同样对于“狗的惧怕行为”,客人因不知内情而面临一个 黑箱,而主人则面临一个灰箱。 作为实际问题,灰色系统在大千世界中是大量存在的,绝对的白色或黑色系统是 很少的。随着人类认识的进步及对掌握现实世界的要求的升级,人们对社会、经济等问 题的研究往往已不满足于定性分析。尽管当代科技日新月异,发展迅速,但人们对自然 界的认识仍然是肤浅的。粮食作物的生产是一个实际的关系到人们吃饭的大问题,但同 时,它又是一个抽象的灰色系统。肥料、种子、农药、气象、土壤、劳力、水利、耕作 及政策等皆是影响生产的因素,但又难以确定影响生产的确定因素,更难确定这些因素 与粮食产量的定量关系。人们只能在一定的假设条件(往往是一些经验及常识)下按照 某种逻辑推理演绎而得到模型。这种模型并非是粮食作物生产问题在理论认识上的“翻 版”,而只能看作是人们在认识上对实际问题的一种“反映”或“逼近”。 社会、经济、农业以及生态系统一般都会有不可忽略的“噪声”(即随即干扰)。 现有的研究经常被“噪声”污染。受随机干扰侵蚀的系统理论主要立足于概率统计。通 过统计规律、概率分布对事物的发展进行预测,对事物的处置进行

  • 2021-10-31
  • 阅读227
  • 下载0
  • 52页
  • pdf

第29章 多元分析

多元分析(multivariate analyses)是多变量的统计分析方法,是数理统计中应用广 泛的一个重要分支,其内容庞杂,视角独特,方法多样,深受工程技术人员的青睐和广 泛使用,并在使用中不断完善和创新。由于变量的相关性,不能简单地把每个变量的结 果进行汇总,这是多变量统计分析的基本出发点。 §1 聚类分析 将认识对象进行分类是人类认识世界的一种重要方法,比如有关世界的时间进程 的研究,就形成了历史学,也有关世界空间地域的研究,则形成了地理学。又如在生物 学中,为了研究生物的演变,需要对生物进行分类,生物学家根据各种生物的特征,将 它们归属于不同的界、门、纲、目、科、属、种之中。事实上,分门别类地对事物进行 研究,要远比在一个混杂多变的集合中更清晰、明了和细致,这是因为同一类事物会具 有更多的近似特性。在企业的经营管理中,为了确定其目标市场,首先要进行市场细分。 因为无论一个企业多么庞大和成功,它也无法满足整个市场的各种需求。而市场细分, 可以帮助企业找到适合自己特色,并使企业具有竞争力的分市场,将其作为自己的重点 开发目标。 通常,人们可以凭经验和专业知识来实现分类。而聚类分析(cluster analyses)作 为一种定量方法,将从数据分析的角度,给出一个更准确、细致的分类工具。 1.1 相似性度量 1.1.1 样本的相似性度量 要用数量化的方法对事物进行分类,就必须用数量化的方法描述事物之间的相似 程度。一个事物常常需要用多个变量来刻画。如果对于一群有待分类的样本点需用 p 个 变量描述,则每个样本点可以看成是 Rp 空间中的一个点。因此,很自然地想到可以用 距离来度量样本点间的相似程度。 记Ω 是样本点集,距离 d(?,?) 是Ω×Ω → R

  • 2021-10-31
  • 阅读216
  • 下载0
  • 88页
  • pdf

第22章 模糊数学模型

1 模糊数学的基本概念 1.1 模糊数学简介 1965 年,美国著名计算机与控制专家查德(L.A.Zadeh)教授提出了模糊的概念,并 在国际期刊《InformationandControl》并发表了第一篇用数学方法研究模糊现象的论文 “Fuzzy Sets”(模糊集合),开创了模糊数学的新领域。 模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼性”。如高个子 与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有 这种模糊的现象,如选举一个好干部,但怎样才算一个好干部?好干部与不好干部之间 没有绝对分明和固定不变的界限。这些现象很难用经典的数学来描述。 模糊数学就是用数学方法研究与处理模糊现象的数学。它作为一门崭新的学科,它 是继经典数学、统计数学之后发展起来的一个新的数学学科。经过短暂的沉默和争议之 后,迅猛的发展起来了,而且应用越来越广泛。如今的模糊数学的应用已经遍及理、工、 农、医及社会科学的各个领域,充分的表现了它强大的生命力和渗透力。 统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然 现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即 从精确现象到模糊现象。 实际中,我们处理现实的数学模型可以分成三大类:第一类是确定性数学模型,即 模型的背景具有确定性,对象之间具有必然的关系。第二类是随机性的数学模型,即模 型的背景具有随机性和偶然性。第三类是模糊性模型,即模型的背景及关系具有模糊性

  • 2021-10-30
  • 阅读209
  • 下载0
  • 52页
  • pdf