第22章 模糊数学模型

1 模糊数学的基本概念 1.1 模糊数学简介 1965 年,美国著名计算机与控制专家查德(L.A.Zadeh)教授提出了模糊的概念,并 在国际期刊《InformationandControl》并发表了第一篇用数学方法研究模糊现象的论文 “Fuzzy Sets”(模糊集合),开创了模糊数学的新领域。 模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼性”。如高个子 与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有 这种模糊的现象,如选举一个好干部,但怎样才算一个好干部?好干部与不好干部之间 没有绝对分明和固定不变的界限。这些现象很难用经典的数学来描述。 模糊数学就是用数学方法研究与处理模糊现象的数学。它作为一门崭新的学科,它 是继经典数学、统计数学之后发展起来的一个新的数学学科。经过短暂的沉默和争议之 后,迅猛的发展起来了,而且应用越来越广泛。如今的模糊数学的应用已经遍及理、工、 农、医及社会科学的各个领域,充分的表现了它强大的生命力和渗透力。 统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然 现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即 从精确现象到模糊现象。 实际中,我们处理现实的数学模型可以分成三大类:第一类是确定性数学模型,即 模型的背景具有确定性,对象之间具有必然的关系。第二类是随机性的数学模型,即模 型的背景具有随机性和偶然性。第三类是模糊性模型,即模型的背景及关系具有模糊性

  • 2021-10-30
  • 阅读233
  • 下载0
  • 52页
  • pdf

第23章 现代优化算法

现代优化算法是 80 年代初兴起的启发式算法。这些算法包括禁忌搜索(tabu search),模拟退火(simulated annealing),遗传算法(genetic algorithms),人工神经网 络(neural networks)。它们主要用于解决大量的实际应用问题。目前,这些算法在理论 和实际应用方面得到了较大的发展。无论这些算法是怎样产生的,它们有一个共同的目 标-求 NP-hard 组合优化问题的全局最优解。虽然有这些目标,但 NP-hard 理论限制它 们只能以启发式的算法去求解实际问题。 启发式算法包含的算法很多,例如解决复杂优化问题的蚁群算法(Ant Colony Algorithms)。有些启发式算法是根据实际问题而产生的,如解空间分解、解空间的限 制等;另一类算法是集成算法,这些算法是诸多启发式算法的合成。 现代优化算法解决组合优化问题,如 TSP(Traveling Salesman Problem)问题,QAP (Quadratic Assignment Problem)问题,JSP(Job-shop Scheduling Problem)问题等效 果很好。 §1 模拟退火算法 1.1 算法简介 模拟退火算法得益于材料的统计力学的研究成果。统计力学表明材料中粒子的不 同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和 重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(这个过 程被称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形 成处于低能状态的晶体。 如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了 退火过程。假设材料在状态i 之下的能量为 E(i) ,那么材料在温度T 时从状态i 进入状 态 j 就遵循如下规律: (1)如果 E( j) ≤ E(i) ,接受该状态被转换。 (2)如果 E( j) > E(i) ,则状态转换以如下概率被接

  • 2021-10-30
  • 阅读288
  • 下载0
  • 20页
  • pdf