最近学习BP神经网络,网上文章比较参差不齐,对于初学者还是很困惑,本文做一下笔记和总结,方便以后阅读学习。
人类不会每一秒都从头开始思考。当你阅读这篇文章时,你会根据你对前面单词的理解来理解每个单词。你不会扔掉所有东西,然后重新开始思考。 而传统的神经网络无法做到这一点,这似乎是一个主要缺点。例如,假设您想对电影中每一点发生的事件类型进行分类。目前尚不清楚传统的神经网络如何利用其对电影中先前事件的推理来通知后来的事件。 递归神经网络解决了这个问题。它们是带有循环的网络,允许信息持续存在。
有个事情可能会让初学者惊讶:神经网络模型并不复杂!『神经网络』这个词让人觉得很高大上,但实际上神经网络算法要比人们想象的简单。
做计算机视觉,离不开CNN。 可是,卷积、池化、Softmax……究竟长啥样,是怎样相互连接在一起的? 对着代码凭空想象,多少让人有点头皮微凉。于是,有人干脆用Unity给它完整3D可视化了出来。
输入神经元可以理解为自变量,输出神经元可理解为因变量。 如果用矩阵表示输入输出的话,每一行矩阵表示一个神元,每一列表示一组数据,这里由于输入输出数据量较大可以采用第三方数据库导入数据的方式,部分情况下由于导入数据神经元是列向量形式,导入后需要进行转置。
本文提出了一种能同时反映时序和空间依赖的图神经网络结构MTGNN,提供了一种多元时序预测的手段,模型结构的设计有多处值得借鉴。
基本思想:是将时序信号分解为残差+季节性+趋势。其中季节性和趋势采用广义线性回归,残差采用神经网络。
BP神经网络(Back Propagation)是基于误差反向传播算法训练的多层前馈网络,能学习存储大量的输入-输出模式映射关系。它的优化方法是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值,使网络误差平方和最小。其实际就是多层感知机,拓扑结构(单隐藏层)如下图所示。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
大模型泛化能力加速具身智能发展,2025年人形机器人进入量产元年资本需求量大,整机布局在一二线城市,关节模组、减产业处于起步阶段,招商代价高,速器、无框力矩电机/空心杯电机、精密传感器、轴承等为各地重点招商方向
场景的数据共享复用。在低空改革试点省份(如湖南、深圳),试点数据要素市场化改革,探索低空数据确权登记、评估定价、交易流通。
技术没有终点,只有不断迭代的里程碑。AI视频技术的发展,最终将指向“人机共创”的新范式。它不会简单地替代人类创作者,而是将人类从繁琐的重复劳动中解放出来,去专注于更具价值的创意构思与情感表达。 现在的AI,是AIGC和Agent的阶段,下一步
档案管理状态下的文件已经正式成为档案。在该状态下,档案的目录信息和原文信息将不能被修改和删除。 档案管理人员在档案管理状态需要完成的工作一般包括:档案目录的打印和档案装盒以档案上架操作,同时对发现有问题的档案可以进行取消归档,将其退回到文件整理中重新鉴定整理,
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南