多选在经济发达区域的周边地带,通常与经济发达区域有良好的交通可达性, 且越靠近高铁站的越好。同相邻的经济发达区域相比,在房价、生活等成本上具有吸引优势。
分析未来五年地区产业园区发展环境,准确把握阿勒泰地区产业园区“十四五”时期面临的机遇与挑战,厘清产业园区发展思路与定位,明确目标任务,为各产业园区编制“十四五”发展规划提供依据。
上篇文章中,给大家分享了一个使用 Dify+RAGFlow 实现的泵类设备的预测性维护案例,过去两天里有很多盆友在后台私信我了一些实现细节,比如:HTTP 请求的数据存在哪里? IoT 平台的数据能否直接实时“流”入 Dify?以及如何使用 MCP 的方案实现四个数据源(IoT, CMMS, MES, ERP)的智能查询。
准确预测电池老化对于缓解电池使用过程中的性能下降至关重要。虽然汽车行业认识到利用现场数据进行电池性能评估和优化的重要性,但其实际实施面临着数据收集方面的挑战,并且缺乏基于现场数据的预测方法。为了解决这个问题,我们从 60 辆运行了 4 年以上的电动汽车中收集现场数据,并开发了一种基于统计特征的稳健数据驱动方法,用于锂离子电池老化预测。所提出的预处理方法集成了数据清洗、转换和重建。此外,我们还引入了多级筛选技术,以从历史使用行为中提取统计特征。利用机器学习,我们准确预测老化轨迹和最差寿命的电池,同时量化预测不确定性。本研究强调基于现场数据的电池健康管理框架,这不仅为船上健康监测和预测提供了重要基础,也为电池第二寿命评估场景铺平了道路。
在轴承故障信号中既包含轴承转动声音,又包含场景中的其他噪声信息。如何聚焦轴承转动的时域特征和频域特征,降低场景噪声的干扰,是我们需要解决的问题。
1 Python 入门学习 2 数据集学习和预处理 3 深度学习入门与实战 4 信号处理基础 5 深度学习和信号处理进阶 6 轴承故障诊断模型全家桶 7 论文学习与资料分享 8 写作技巧与科研创新
1.预处理部分:结合快速傅里叶变换FFT和变分模态分解VMD来进行信号的时频、域特征提取,能够挖掘故障信号中的多尺度特征; 2.然后是利用CNN卷积神经网络提取故障信号预处理后的多尺度特征的空间特征,用BiLSTM提取故障信号预处理后的多尺度特征的时域特征; 3.最后利用交叉注意力进行时空特征的融合,从而提高特征的表示能力来实现故障信号的识别
本文在研究离散制造行业典型特征的基础上,分析数字化转型、智能化升级面临的挑战和共性关键技术,结合家电、家居、纺织、食品 4 个典型行业转型升级案例,提出数字化转型与智能化升级的技术路径;总结离散型制造企业数字化转型与智能化升级的重点任务,提出相应的对策建议。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。
市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。
XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。
区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南