机载激光测深技术属于主动测深系统,采用扫描测量方式从空中发射激光来探测水深,具有覆盖范围广、作业周期短、测量点云密、点云精度高、低消耗、高机动性等特点。从国外研究情况看,其在50m以浅的水域,具有无可比拟的优越性,特别是能够高效快速测量浅海岛礁、暗礁及船只无法安全到达的水域。世界上成熟的机载激光测深系统主要有5种,分别是加拿大的SHOALS系统,瑞典的HawkEye系统,澳大利亚的LADS系统,美国NASA的EAARL以及SHOALS系统的升级产品CZMIL系统。根据有关文献中各种测深设备标称的测深精度、最小探测水深、最大探测水深、激光器的重复频率、测点密度、扫描带宽等参数可以看出CZMIL测深系统的综合性能最佳。
地形(topography)是指地球表面的高低起伏形态,高程是描述地表起伏形状的最基本的几何量。美国麻省理工学院摄影测量学实验室的Miller和Laflamme通过摄影测量技术采样地形数据,用于解决计算机辅助道路设计相关的工程问题,最早提出了数字地形/地面模型(digital terrain model,DTM)的概念,即利用一个任意坐标场中选择大量已知X、Y、Z的坐标点对连续地面进行简单统计表示,得到描述地球表面形态多种信息空间分布特征的有序数值阵列。基于高程数据得到的派生产品,如坡度、坡向、曲率等地貌因子,均可以作为DTM的第三维分量用于描述地形特征。
无人机是未来网络环境下一种数据驱动的空中移动智能体,而无人机遥感则是无人机应用最重要的引领性产业。本文首先以国内外无人机遥感发展现状为背景,重点概述了中国无人机遥感21世纪以来“十五”到“十三五”所获得的具有代表性的国家支持与推动的发展历程,阐述了无人机遥感定标场,航空航天定标场的建立以及应用验证,包括无人机遥感系统的载荷与系统技术发展;然后进一步阐述了以遥感定标场、地物参量引导载荷性能、系统模型为代表的中国无人机遥感的相关技术跨越;接着,概略介绍了无人机遥感在国防反恐安全以及跨国应急救援,国土测绘与海洋岛礁测绘应用,地质灾害应用以及国家应急救援等领域的产业应用;最后,介绍了中国在无人航空遥感领域展开的跨越性的工作,包括组网智能控制、精度和实时性度量基础、载荷平台自组织冗余容错、遥感大数据云处理技术和无人机遥感组网实用化等内容。未来无人机遥感发展的总体目标是建立起具备迅捷信息获取能力的无人航空器组网观测系统,实现无人航空器组网技术由项目层面跨越到遥感领域,同时也为中国成为世界遥感强国的国家战略跨越奠定基础。
滨海湿地是陆地生态系统与海洋生态系统的交错过渡地带,被认为是生产力最高、生物多样性最丰富的生态系统之一,为人类提供防止风暴和海岸侵蚀、供给水产品、净化水体和生物多样性维护等重要生态系统功能服务。然而,由于沿海地区人口的急剧增长和社会经济的快速发展,自然资源掠夺性开发日益加剧,滨海湿地已成为全球受威胁最为严重的自然生态系统之一。据统计,全球约有50%的盐沼、35%的红树林和29%的海草由于环境压力和人类干扰而丧失或退化。退化滨海湿地生态系统的恢复也由此成为全球关注的热点。
随着经济社会的高速发展,近年来我国海洋生态系统遭受不同程度的破坏,出现海湾服务功能下降、湿地萎缩、海岛破坏和生物多样性丧失等问题。为改善海洋生态环境,2010年5月18日,财政部经济建设司、原国家海洋局财务司联合印发《关于组织申报2010年度中央分成海域使用金支出项目的通知》(财建便函〔2010〕83号),通过中央分成海域使用金支持地方实施海域、海岛和海岸带整治修复及保护项目,自此我国海洋生态保护修复工作正式启动。
本规划所称海岸带区域范围,涵盖广东沿海县级行政区的陆域行政管辖范围及领海外部界线以内的省管辖海域范围,并将佛山部分地区和东沙群岛纳入。规划总面积11.81万平方千米,其中陆域5.34万平方千米,海域6.47万平方千米,海岛1963个,涉及地级以上市15个,县(市、区)56个,镇(乡)727个,人口约7000万。
近几十年来,随着我国沿海经济的快速发展,海洋环境问题也随之而来,海洋资源开发不足与利用过度并存、近岸海域环境污染和生态生境恶化加重等问题日趋严峻,已经严重影响到了沿海居民的生存环境和经济社会的可持续发展。保护海洋资源环境、优化海洋产业结构成为当前最为关注的重大问题。在此背景下,我国实施了海洋功能区划、海洋主体功能区划、海洋生态红线区划等一系列海域空间管控制度。海洋生态红线是十八大之后对海洋科学领域提出的新命题,是我国“五位一体”生态文明建设的具体要求。本研究总结了我国近年来海洋功能区划和海洋生态红线区划的研究进展及问题,探讨海洋功能区和红线区之间的关系,对提高我国海洋资源开发和综合管理能力、加强海洋环境保护工作、维持人与自然和谐发展具有重要意义。
太平洋南北长约15,900公里,东西宽约19,900公里,面积约1.66亿平方公里(不含属海)。平均深度4189米(不含属海),最大深度位于马里亚纳海沟,达到11,033米。太平洋总轮廓近似圆形,其西南以东经107度(珀斯,澳洲)与印度洋分界,东南以西经86 与大西洋分界,北经白令海峡与北冰洋连接,东经巴拿马运河、麦哲伦海峡、德雷克海峡沟通大西洋,西经马六甲海峡、巽他海峡通印度洋。
没有账户,需要注册
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
在工业过程监测中,长期平稳特征在表示基本统计信息方面起着重要作用。然而,基于自编码器的方法通过实现原始数据的数值近似来提取深度特征,这可能会导致隐藏的平稳信息的破坏。为了解决这个问题,本文提出了一种基于平稳特征重构的协整堆叠自编码器模型,以在模型训练过程中保持长期均衡关系。推理标准。通过重构平稳特征,所提出的网络能够保留非平稳变量之间的有益关系。最后,在两种情况下验证了所提出方法的故障检测性能。
钢包炉气精炼、钢水温度、极梯度升压;光梯度增强机;灰狼优化:SHapley加法运算
现代工业装置普遍表现出规模大、过程长、多单元协同作业的特点,这使得时空分布具有内在性,质量稳定性通常难以保证。本文提出了一种基于质量相关时空信息分析的多单元协同监控框架。在该框架中,分别从单元级和过程级分析时空属性。首先,对于每个操作单元,采用当前特征提取策略构建质量监督时空支持区域。在该策略中,时间动态特征由具有注意力机制的长短期记忆(LSTM)网络提取。同时,利用互信息核主成分分析方法提取空间特征。其次,对于全厂过程,构建了一个三阶多单元时空特征张量进行特征融合。通过张量分解位置,探索了单元之间的相互关联和过程中的质量继承,并将原始特征空间分解为几个子空间。最后,在子空间上开发了一个多单元协同监测模型,并通过贝叶斯融合给出了综合监测结果,可以对监测结果进行合理的解释。所提出的框架在实际的热轧带钢生产过程中得到了验证。
现代制造过程通常包含多个子过程,过程变量的时空特征难以提取,这给传统的质量相关故障诊断带来了重大挑战。为了解决这个问题,我们提出了一种由图注意力网络驱动的故障检测模型——集成门控递归单元规范变量分析(GATRU-CVA)。首先,利用领域专家的知识和历史数据构建子块知识图。接下来,为全局变量构建了图注意力网络(GAT)的空间特征提取器。此外,使用子块知识图将全局空间特征划分为子块,并构建相应的时间特征提取器。然后,考虑到过程动态特性,使用CVA基于时空特征对过程进行建模,并计算相应的统计数据。阈值由核密度估计器(KDE)方法确定。最后,使用热轧带钢机过程(HSMP)的实际生产数据来验证所提出的模型。结果表明,该方法对HSMP的正确监测率(CMR)为97%与其他比较故障检测方法相比。关键词:规范变量分析、故障检测、门控递归单元(GRU)、图注意力网络(GAT)知识图。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南