基于深度学习的数据驱动建模对于工业过程中的在线产品质量预测至关重要。从传感器变量中提取潜在的数据交互是各种数据驱动建模应用的核心。通常,由于操作条件的变化和传感器调谐问题,观察到的变量表现出非平稳特性。这些波动不可避免地影响了传统特征提取方法的可靠性,从而阻碍了它们的应用。因此,本文提出了一种名为横向感知深度注意力图卷积网络(RaDA-GCN)的新方法来探索传感器变量之间的潜在相互作用,RaDA-GPN巧妙地将注意力机制融入图卷积层中,根据其重要性提取非线性变量相关特征,然后设计了一种新的残差感知连接模块来减少数据不确定性并减轻过度平滑。通过巧妙地堆叠多个注意力图卷积层并集成残差感知连接,可以获得深层结构特征,从而有效地量化和揭示数据变量之间的潜在关系。最后,基于所提出方法的预测建模框架的应用验证了其在实际工业过程数据中的有效性。“实验结果表明,与传统的图卷积网络方法相比,所提出的RaDA-GCN方法的R平方(R')指标提高了23%,均方根误差(RMSE)降低了13%。 关键词:深度学习、质量预测、图卷积网络、注意力机制、残差感知连接、工业过程
由于工业过程中测量技术和成本的限制,在均匀采样率下很难获得具有不同特性的变量(如流量和温度)的测量值。这导致所收集的工业过程数据普遍存在多速率采样特性,给工业过程的质量预测带来了巨大挑战。为了解决这个问题,本文提出了一种基于Transformer模型的新型质量预测建模方法,称为多速率工业过程的多速率成形器。首先,通过将数据变量排列到相同的采样率来对原始数据进行分块。然后,通过多层卷积网络和变换器完成数据的分层粗粒度和细粒度互补。值得注意的是,提出了一种新的采样型编码方法来探索多速率过程数据的缺失模式。经过上述预训练后,为后续的微调过程提供了修补的完整数据集和更好的初始权重。最后,利用质量变量的多步预测误差对整个网络参数进行微调。该方法应用于工业脱丁烷塔和实际工业加氢裂化过程的多速率多步预测。实验结果表明,在处理多采样率类型的工业过程数据方面,该方法优于其他最先进的方法。关键词:多速率工业过程,多速率成形器,多步预测,采样类型编码。
3D 视觉感知对于自动驾驶和机器人等应用至关重要。虽然基于摄像头的 3D 物体检测方法因其成本效益和检测远距离物体的能力而受到关注,但它们在效率和准确性方面存在困难,尤其是在处理跨多个摄像头视图的信息时。鸟瞰图 (BEV)是自动驾驶中的一种常见表示,因为它可以提供对周围环境的清晰空间理解。但是,从 2D 图像生成强大的 BEV 特征以用于 3D 物体检测等任务具有挑战性。BEVFormer 论文介绍了一种使用时空变换器生成 BEV 特征的新方法 BEVFormer 。与以前的方法不同,BEVFormer 不依赖深度信息,可以动态聚合空间和时间信息。
对于机械系统的预测和健康管理,一项核心任务是预测机器的剩余使用寿命(RUL)。目前,具有自动特征学习的深度结构,如长短期记忆(LSTM),在RUL预测方面取得了很好的性能。然而,传统的LSTM网络只使用最后一个时间步的学习特征进行回归或分类,效率不高。此外,一些具有领域知识的手工制作的特征可能会为RUL的预测提供额外的信息。因此,将这些手工制作的特征和自动学习的特征集成到RUL预测中是非常有动力的。在这篇文章中,我们提出了一种基于注意力的深度学习框架,用于机器的RUL预测。LSTM网络用于从原始数据中学习序列特征。同时,所提出的注意力机制能够学习特征和时间步长的重要性,并为更重要的特征和时间步分配更大的权重。此外,开发了一个特征融合框架,将人工生成的特征与自动学习的特征相结合,以提高RUL预测的性能。对两个真实数据集进行了广泛的实验,实验结果表明,我们提出的方法优于现有技术。 关键词:注意力机制、特征融合手工特征、长短期记忆(LSTM)、机器剩余使用寿命(RUL)预测、预后和健康管理(PHM)。
准确模拟大型锂离子电池(LLBs)的电化学过程,包括估计过程中的电化学状态分布,对于LLBs的设计和管理至关重要。基于二维物理的模型可以准确地描述LLB的电化学过程。然而,由于存在复杂的偏微分方程(PDE),求解模型成为一项具有挑战性的任务。本文开发了一个物理信息复合网络(PlCN)作为二维物理模型的替代模型。具体来说,PlCN由四个深度神经网络(DNN)组成,分别估计四个关键电化学状态的分布。由于PlCN的架构受到PDE特性的启发,它可以通过四个轻量级DNN实现高精度。此外,通过结合物理和数据,PlCN使用有限的数据实现了准确的估计。它甚至可以估计可能无法直接测量的电化学状态分布。MoreoverPICN提出了一种基于低频信息的预训练策略和两阶段损失平衡策略,以解决PlCN训练中可能出现的收敛失败和损失不平衡问题。PlCN是通过将物理与数据相结合来模拟LLBs电化学过程的新尝试。大量实验表明,它比最先进的模型要好。 关键词:数据、电化学过程、锂离子电池、物理学、替代模型。
中服云物联网平台,业界领先,功能强大
开源,一款,基于,go,语言,开发,商业级,saas,云原生,微服务,工业物联网平台,中服云工业物联网平台
一款,适用于,多个,场景,开源,工业物联网平台,中服云工业物联网平台,业界领先的工业物联网平台
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南