• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

IMS-MOM盘古信息MOM智能制造系统介绍(56页)

IMS-MOM 盘古信息MOM智能制造系统介绍(56页),IMS-MOM 盘古信息MOM智能制造系统介绍(56页),IMS-MOM 盘古信息MOM智能制造系统介绍(56页)

  • 2024-12-27
  • 阅读208
  • 下载1
  • 56页
  • pdf

SCI一区开源代码推荐|最大子空间可迁移性判别分析:一种用于风电机组故障迁移诊断的跨域相似性度量新方法

SCI一区开源代码推荐 | 最大子空间可迁移性判别分析:一种用于风电机组故障迁移诊断的跨域相似性度量新方法

  • 2024-12-24
  • 阅读296

IEEETIM多尺度深度注意Q网络:一种用于齿轮箱不平衡故障诊断的深度强化学习新方法

确保机械驱动系统的安全在很大程度上依赖于准确的变速箱故障诊断。然而,实际多工况和不均匀样本分布的存在使变速箱的故障诊断更具挑战性。尽管使用卷积神经网络(CNNs)的智能故障诊断(IFD)已经显示出有希望的结果,但它们通常需要强大的反馈学习和经验丰富的超参数调整来完成不同的任务。在本文中,从深度强化学习(DRL)的角度提出了一种新的方法,称为多尺度深度注意力Q网络(MDAQN),用于不平衡齿轮箱故障诊断。引入了一种考虑类间偏差的不平衡分类马尔可夫决策过程(ICMDP),作为数据不平衡情况下增强分类策略学习的环境模拟。此外,设计了一种新的多尺度注意力卷积网络作为深度Q网络(DQN)算法的代理结构,从而提高了在复杂运行条件下的判别特征学习能力。通过利用DRL的弱反馈交互,对诊断模型进行训练,从而有效地进行不平衡齿轮箱故障诊断。在三个齿轮箱不平衡数据集上的实验结果表明,MDAQN表现出优越的特征提取能力和泛化能力,与多种现有方法相比,准确率超过99.0%。Index Terms—注意力,深度强化学习(DRL),变速箱,不平衡故障诊断,多尺度学习

  • 2024-12-23
  • 阅读395

一般来说,三层神经网络可以逼近任何一个非线性函数,为什么还需要深度神经网络?为什么深度学习模型能够自动提取多层次特征?|深度学习

一般来说,三层神经网络可以逼近任何一个非线性函数,为什么还需要深度神经网络?为什么深度学习模型能够自动提取多层次特征?|深度学习

  • 2024-12-22
  • 阅读323

如何实现“零样本”交通信号控制?图神经网络如何让智能交通系统适应任意复杂的道路结构?其中的关键原理是什么?

在现代城市化进程中,交通拥堵已成为全球性问题。传统的交通信号控制方法往往依赖于预先设定的规则和大量的历史数据,但随着城市道路网络的复杂化和动态变化,传统方法在面对未见过的道路结构或场景时显得力不从心。因此,如何实现一种无需依赖先验数据、能够直接适配任意复杂道路结构的“零样本”交通信号控制,成为智能交通领域的重要研究方向。

  • 2024-12-22
  • 阅读276

IEEETII基于随机权重网络的多目标增量建模

本文提出了一种基于图片-正则化的多目标IRWN来解决多目标过程建模问题。在常规IRWN中引入特征层,以提高特征提取能力。此外,采用了一个集成图片范数正则化的目标函数来捕捉目标之间的潜在关系。此外,通过Greville方法,构建了一个全局质量约束,并用于选择有效的随机参数,以同时提高性能并确保所提出方法的收敛性。最后,在六个基准数据集和真实的多目标建模过程中测试了所提出方法的泛化性能。实验结果表明,所建立的模型非常适合多目标应用。 虽然MTIRWN可以有效地处理多目标建模问题,但仍需要考虑一些局限性。1)随着概念漂移问题的出现,MTIRWNs的准确性和鲁棒性肯定会受到影响。在未来,将进一步探索考虑概念漂移的鲁棒和自适应增量学习。2) 由于ADMM和特征层的结合,MTIRWN的构建需要花费更多的时间。在未来的工作中,将采用基于GPU的优化方法,并探索有限元纯层参数确定方法,以降低计算成本。3) 在未来,我们将考虑大量隐藏节点的建模误差缓慢下降的现象。并且,我们希望将所提出的方法与建模误差的加速减小方法相结合,建立一个隐藏节点较少的强大多目标学习模型。

  • 2024-12-19
  • 阅读265

自动驾驶算法——理解强化学习(四)

首先回顾这个系列前几篇文章:自动驾驶算法——理解强化学习(一) 和 自动驾驶算法——理解强化学习(二)和自动驾驶算法——理解强化学习(三)。

  • 2024-12-19
  • 阅读198

自动驾驶算法——理解强化学习(三)

MC 方法很简单;你只是直接从经验情节中学习。它之所以无模型,是因为没有任何关于 MDP 转换/奖励的知识。它使用简单的“价值 = 平均回报”这一想法从完整的情节中学习。警告:只能将 MC 应用于情节 MDP,并且所有情节都必须终止。

  • 2024-12-19
  • 阅读199
上一页 1 …… 1819202122232425262728 …… 2191 下一页 共 17527 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读65
  • 下载1

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读62
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读74
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读119
  • 下载4

最新上线

中服云工业物联平台火山地震监测解决方案

中服云作为国内领先的工业物联网平台厂商,其技术架构与功能特性高度适配火山地震监测场景的需求

  • 阅读27
  • 下载0

新一代人工智能发展规划__2017年第22号国务院公报_中国政府网

人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能 发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家 和世界科技强国,按照党中央、国务院部署要求,制定本规划

  • 阅读33
  • 下载0

卫生健康行业人工智能应用场景参考指引

:整合多模态医学数据,包括图像、文本、声音、 传感器数据和基因组、转录组、蛋白质组等多组学数据,完成 不同时间点、条件下的数据对齐,构建医学科研数据资源库。 利用数据融合模型与方法,提供跨模态标注算法和标注工具, 揭示跨模态数据之间的语义关联性,帮助分析其相互作用和整 合效果,提高诊断和分析的准确性。面向不同类型的数据,提 供计算机视觉、自然语言处理、图学习等多类算法,对多模态 数据进行特征提取、模型训练、统计分析等,以识别疾病标志 物和模式。提供科研合作平台,促进跨学科研究团队的协作, 支持将分析结果转化为临床辅助决策支持工具,辅助医生进行 更准确的诊断和治疗规划。

  • 阅读50
  • 下载1

生成式人工智能服务管理暂行办法__2023年第24号国务院公报_中国政府网

 为抢抓人工智能发展新机遇,支持人工智能技术赋能智能终端产品,推动智能终端产业高质量跨越 式发展,加快建设国际国内领先的人工智能终端产业集聚区,按照《关于加快发展新质生产力进一步推 进战略性新兴产业集群和未来产业高质量发展的实施方案》《深圳市加快打造人工智能先锋城市行动方 案》等文件要求,结合我市实际,制定本行动计划

  • 阅读37
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南